Strengthening trade winds and an enhanced Equatorial Pacific

carbon source

Sarah Schluneggerⁱ Jorge Sarmientoⁱ, Keith Rodgersⁱ, Thomas Froelicherⁱⁱ Air-Sea Gas Flux Workshop September 6, 2016

ⁱPrinceton University, ⁱⁱETH Zurich

1. Question

"Dangerous" length of observational records, mixture of anthropogenic and natural forcings.

How can the newly available Earth System Model Initial Condition Large Ensemble experiments and data-based carbon flux products inform each other about natural variability in the strength of the ocean carbon sink?

Outline

1. Question

- 2. Tools
- 3. Findingsa. Global Pictureb. Equatorial Pacific

2. Tools Schematic: Sources of Uncertainty Scenario

2. Tools

- 1. Two initial condition large ensemble experiments (GFDL-ESM2M, CESM1-BGC)
- 2. CMIP5 Earth System Models, multi-model ensemble

2. Tools

- 1. Two ICLE's (GFDL-ESM2M, CESM1-BGC)
- 2. CMIP5 multi-model ensemble
- 3. Observational data-based products of Air-Sea carbon fluxes over the period 1990-2009

Fig. 1. Global Annual Air-to-Sea Carbon Flux

2. Tools

Sidebar: Why is ocean carbon uptake sensitive to atmospheric initial conditions?

- Winds and climate modes change upwelling strength/patterns
- Freshwater fluxes change carbon concentrations
- Winds change gas exchange rate between ocean and atmosphere
- Temperatures changes solubility
- Buoyancy fluxes change mixing
- Biology Nutrients, temperature, light, etc.

Outline

- 1. Motivation
- 2. Tools
- 3. Findings
 - a. Global Pictureb. Equatorial Pacific

3a. Global Picture

Returning to the main question, how do the ESM ensembles and data-based ensembles compare?

(1st) Mean & (2nd) Natural Variability

Forced (anthropogenic) trend only

Forced trend + natural variability

-0.5 -0.25 0 0.25 0.5 0.75 reduced increased ocean sink gC/m2/yr/yr ocean sink

3a. Observational Period 1990-2009 Fig. 3. 20-Year Trends: Individual GFDL-ESM2M Ensemble Members

Differences in ensemble members due **only** to background climate. Appreciate the contribution of internal variability to setting decadal trends in the ocean

carbon sink.

1 gC/m²/yr *ocean.area = 0.33 PgC/yr, Current annual uptake ~2 PgC/yr

21

26

-0.5 -0.25 SOUICE 0.25

 $gC/m^2/yr/yr$

0.5

0.75

sink

20

25

3a. Observational Period 1990-2009 Fig. 3. 20-Year Trends: Individual GFDL-ESM2M Ensemble Members

8

Outline

- 1. Motivation
- 2. Tools
- 3. Findings
 - a. Global Picture

b. Equatorial Pacific

3b. Equatorial Pacific

Fig. 5. Histograms of carbon trends in Pacific

Mean OBS trends in Pacific Air-Sea carbon flux outside the range of the ensembles.

Why are the observed trends in Air-Sea carbon exchange over the Equatorial Pacific outside the range of the ensembles?

Hypothesis: Model bias in wind stress

Support for Wind-stress hypothesis: Consistent model bias in

- (1) Wind-stress
- (2) East-West SSH gradient
- (3) Air-Sea carbon fluxes

<u>Currently Underway</u>: wind-substitution experiments, using Delworth et. al., (2014) method, but with ESM2M, testing ocean-carbon response to observed decadal trends in Equatorial Pacific winds.

<u>Currently Underway</u>: wind-substitution experiments First 2 years (1979-1980) of simulations complete:

Conclusions

- 1. Initial Condition Large Ensemble and Multi-model experiments with ESM's indicate natural variability produced much of data-based regional trends in the ocean carbon sink over past 2 decades.
- 2. Model bias in decadal variability of Equatorial Pacific wind stress is candidate cause of disagreement between data-based estimates and modeled trends in the ocean carbon sink in this region.