OceanFlux Greenhouse Gases Evolution

Jamie Shutler, David Woolf, Andy Watson, Jacek Piskozub, Bertrand Chapron, Phil Nightingale, Lonneke Goddijn-Murphy, Ute Schuster, Fanny Girard-Ardhuin, Jean-Francois Piolle, Mark Warren, Antoine Grouazel, Peter Land, Ian Ashton

OceanFlux Initiative

Reinforce scientific collaboration between ESA and international SOLAS. Fostering collaboration between different scientific communities. First phase was developed in close collaboration with international SOLAS.

OceanFlux Initiative

Reinforce scientific collaboration between ESA and international SOLAS. Fostering collaboration between different scientific communities. First phase was developed in close collaboration with international SOLAS.

OceanFlux has two generic aims:

- Support development of novel products.

- Facilitate and advance integration of Earth observation data into SOLAS process studies.

OceanFlux Initiative

Reinforce scientific collaboration between ESA and international SOLAS. Fostering collaboration between different scientific communities. First phase was developed in close collaboration with international SOLAS.

OceanFlux has two generic aims:

- Support development of novel products.

- Facilitate and advance integration of Earth observation data into SOLAS process studies.

Current project is called OceanFlux Greenhouse Gases Evolution

Aim

OceanFlux Greenhouse Gases Evolution:

 Generate and demonstrate the impact of improved estimates of airsea CO₂ and other atmosphere-ocean gas fluxes using EO data for use by SOLAS and other air-sea gas flux communities.

 22 specific requirements from ESA including software development, scientific studies and outreach.

JOURNAL OF GEOPHYSICAL RESEARCH Oceans

Explore this journal >

Space-based retrievals of air-sea gas transfer velocities using altimeters: Calibration for dimethyl sulfide

Lonneke Goddijn-Murphy 🖾, David K. Woolf, Christa Marandino

First published: 24 August 2012 Full publication history

DOI: 10.1029/2011JC007535 View/save citation

Cited by: 1 article

Citation tools

View issue TOC Volume 117, Issue C8 August 2012

JOU	RNAL OF GEOPH	YSICAL RESEARCH									
Sp	ELSEVIER	Remain Sensing Environment									
tra Ca Lon	Improvements to estimating the air-sea gas transfer velocity by using dual-frequency, altimeter backscatter										
Firs DOI Cite	Lonneke Goddijn-Murphy ^{a,} 📥 🔤, David K. Woolf ^b , Bertrand Chapron ^c , Pierre Queffeulou ^c 🗄 Show more										
	http://dx.doi.org/10	0.1016/j.rse.2013.07.026	Get rights and conter								

Highlights

All shows a second s

Journal of Geophysical Research: Oceans

RESEARCH ARTICLE Impact of wind waves on the air-sea fluxes: A coupled model

10.1002/2013JC009412

Key Point:

New wind-over-wave-coupling model

Correspondence to:

V. Kudryavtsev¹, B. Chapron^{1,2}, and V. Makin³

¹Satellite Oceanography Laboratory, Russian State Hydrometeorological University (RSHU), St. Petersburg, Russia, ²Laboratoire d'Oceanographie Spatiale, Ifremer, Plouzane, France, ³Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Consolidated description of temperature and salinity handling within gas flux calculations

Woolf, D. K., Land, P. E., Shutler, J. D., Goddijn-Murphy, L. M., Donlon, C. J. (2016) On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients, *Journal of Geophysical Research*.

Climatology of fCO₂ normalised to 2010

Ocean Sci., 11, 519–541, 2015 www.ocean-sci.net/11/519/2015/ doi:10.5194/os-11-519-2015 © Author(s) 2015. CC Attribution 3.0 License.

The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO₂ fugacity in support of air-sea gas flux studies

L. M. Goddijn-Murphy¹, D. K. Woolf², P. E. Land³, J. D. Shutler⁴, and C. Donlon⁵

¹ERI, University of the Highlands and Islands, Ormlie Road, Thurso, UK
 ²ICIT, Heriot-Watt University, Stromness, UK
 ³Plymouth Marine Laboratory, Prospect Place, Plymouth, UK
 ⁴University of Exeter, Centre for Geography, Environment and Society, Penryn, Cornwall, UK
 ⁵European Space Agency/ESTEC, Noordwijk, the Netherlands

Correspondence to: L. M. Goddijn-Murphy (lonneke.goddijn-murphy@uhi.ac.uk)

Climatology of fCO₂ normalised to 2010

mean $f_{CO2,cl}$ (µatm) from SOCAT V2 (std of monthly mean < 25)

FluxEngine – air-sea gas flux toolbox

Toolbox developed for community use:

- Open source license (python and PERL based).
- Standard NetCDF data input and output.
- Net flux tool with traceable land/ocean/basin templates.
- User configurable gas flux calculation.
- Extensively verified using published data.

Example mean daily flux output

Example process indicator layer output using ESA Climate Change Indices chl-a

Shutler, J. D., Piolle, J-F., Land, P., Woolf, D. K., Goddijn-Murphy L.,, Paul, F., Girard-Ardhuin, F., Chapron, B., Donlon, C. J., (2016) Flux Engine: A flexible processing system for calculating air-sea carbon dioxide gas fluxes and climatologies, *Journal of Atmospheric and Oceanic Technology.*

oceanflux evolution support to science element

climatologies, Journal of Atmospheric and Oceanic Technology.

FluxEngine – air-sea gas flux toolbox

Toolbox developed for community use:

Software toolbox available for free on github

Now being used for:

1. Research:

- Two ESA projects.
- Three PhD projects (2xUK, 1xPoland).
- Three UK funded research projects (2xNERC, Royal Society Fellowship).
- To be used to support ICOS (within EU H2020 RINGO).

1. Teaching:

- One undergraduate degree (Computer Science at Maastricht University, The Netherlands).

ESA Glimate Gnange Indices chi-a

Shutler, J. D., Piolle, J-F., Land, P., Woolf, D. K., Goddijn-Murphy L., Paul, F., Girard-Ardhuin, F., Chapron, B., Donlon, C. J., (2016) Flux Engine: A flexible processing system for calculating air-sea carbon dioxide gas fluxes and climatologies, *Journal of Atmospheric and Oceanic Technology.*

FluxEngine – air-sea gas flux toolbox

Toolbox developed for community use:

Software toolbox available for free on github

Now being used for:

1. Research:

- Two ESA projects.
- Three PhD projects (2xUK, 1xPoland).
- Three UK funded research projects (2xNERC, Royal Society Fellowship).
- To be used to support ICOS (within EU H2020 RINGO).

1. Teaching:

- One undergraduate degree (Computer Science at Maastricht University, The Netherlands).

http://www.oceanflux-ghg.org/Products/FluxEngine

climatologies, Journal of Atmospheric and Oceanic Technology.

Involvement and provided data for the SOCOM community inter-comparison

Biogeosciences, 12, 7251–7278, 2015 www.biogeosciences.net/12/7251/2015/ doi:10.5194/bg-12-7251-2015 © Author(s) 2015. CC Attribution 3.0 License.

Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean *p*CO₂ Mapping intercomparison (SOCOM)

C. Rödenbeck¹, D. C. E. Bakker², N. Gruber³, Y. Iida⁴, A. R. Jacobson⁵, S. Jones⁶, P. Landschützer³, N. Metzl⁷, S. Nakaoka⁸, A. Olsen⁹, G.-H. Park¹⁰, P. Peylin¹¹, K. B. Rodgers¹², T. P. Sasse¹³, U. Schuster⁶, J. D. Shutler⁶, V. Valsala¹⁴, R. Wanninkhof¹⁵, and J. Zeng⁸

Assessing the importance on rain on global and regional air-sea gas fluxes

Use FluxEngine to estimate the impact of rain on global estimations of CO2 exchange between the ocean and the atmosphere.

Enhanced gas transfer, *k*, and **Direct deposition**, *F*_{DIC} applied to multiyear global analysis.

Effective transfer rate calculated using a nonlinear relationship with wind:

Transfer depends on rain rate, Rn and the partial pressure of CO₂ in the air, pCO_{2A} $F_{DIC} = Rn \alpha pCO_{2A}$

 $k_{total} = k_{wind} + [1 - exp(\alpha\beta)] k_{rain}$

Rain terms increase the annual global net CO₂ sink by up to 6%. Regionally it can larger (e.g. 15% increase in Pacific annual net sink). Monthly regional net fluxes can be modulated by > ±50%.

Ashton, I. G., Shutler, J. D., Land, P. E., Woolf, D. K., Quartly, G. (in-press) A sensitivity analysis of the impact of rain on regional and global sea-air fluxes of CO₂, *PlosOne*.

Other recent progress and current research

- FluxEngine version 2 software now released:
 - Now includes CH₄, N₂O, rain parameterisations and handling for polar stereographic data.
- Re-analysed SOCATv3 dataset to a common SST.
 - Software and data will become available later this year.
- Initial results from an Arctic study using new satellite capabilities – between ice gas exchange.
- Developing a calibrated bubble-mediated gas transfer relationship.

International Space Science Institute (ISSI) Working Group

sentine	esa										
		1 63	BBC	O Sign in	÷ #	News	Sport	Weather	iPlayer	T	
ESA OBSERVING THE	EARTH COPERNICUS	SENTINEL-3	NEW	/S							
The bigger picture · Introducing Sentinel-3	ESA > Our Activities >	Observing the Earth > Cop	Home UK Science &	World Business	Politics	Tech	Science	Health	Education	ļĘ	
Applications · Oceans of change · Over land	-		How N carbo	lorthern E n dioxide	urope	ean w	ater	r <mark>s so</mark> a	ik up		
About the mission Facts and figures Satellite constellation Instruments About the launch 	- Alex		By Jonathan / BBC Science © 25 Februar	Amos Correspondent y 2016 Science & Er	wironment	14	de la				
Meet the team								-			
Operations and data								2			
· Data products	Carbon flux Access the video						2	-			
Multimedia	SENTINEL-3 AND TH	IE OCEAN CARBON CONU			4						
							And a	and a	AF	P	

Colder, stormy waters at higher latitudes tend to take up most carbon dioxide

E

SCIENCE WORKSHOP 6 - 9 Sept. 2016 BREST | FRANCE

Scientists and engineers are invited to attend the Science Workshop which will allow the project and other international teams to present their recent advances, it will also provide a forum for the community to plan future aims and collaborations.

The OceanFlux Greenhouse Gases project

Aims to improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

oceanflux evolution

support to science element

Published OceanFlux advances

Advances in methods, tools, assessment, community partnerships and data provision.

Journal publications

- Shutler JD, Quartiy GD, Donion CJ, Sathyendranath S, Platt T, Chapron B, Johannessen JA, Girard-Ardhuin F., Nightingale PD, Woolf DK, Høyer JL (2016), Progress in satellite remote sensing for studying physical processes at the ocean surface and its borders with the atmosphere and sea ice, *Progress in Physical Geography*, 40: 215-246, doi:10.1177/0309133316638957. link
- Shutler JD, Land PE, Piolle J-F, Woolf DK, Goddijn-Murphy L, Paul F, Girard-Ardhuin F, Chapron B, Donlon CJ (2016), FluxEngine: a flexible processing system for calculating atmosphere-ocean carbon dioxide gas fluxes and climatologies, *Journal of Atmospheric and Oceanic Technology*, doi: 10.1175/JTECH-D-14-00204.1. link
- Woolf DK, Land PE, Shutler JD, Goddijn-Murphy LM, Donlon CJ (2016), On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients, *Journal of Geophysical Research-Oceans*, doi: 10.1002/2015JC011427. link
- Goddijn-Murphy L, Woolf DK, Callaghan AH, Nightingale PD, Shutler JD (2015), A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity, *Journal of Geophysical Research-Oceans*, doi:10.1002/2015JC011096. link
- Goddijn-Murphy, L.M., D.K. Woolf, P.E. Land, J.D. Shutler, C.J. Donion (2015), The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO₂ fugacity in support of air-sea gas flux studies, *Ocean Science*, 11, 519-541, doi:10.5194/os-11-519-2015. link
- Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park, G.-H., Peylin, P., Rodgers, K. B., Sasse, T. P., Schuster, U., Shutler, J. D., Valsala, V., Wanninkhof, R., and Zeng, J. (2015) Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM), *Biogeosciences*, 12, 7251-7278, doi:10.5194/bg-12-7251-2015. link
- Kudryavtsev, V., B. Chapron, and V. Makin (2014), Impact of wind waves on the air-sea fluxes: A coupled model, Journal of Geophysical Research - Oceans, 119, 1217–1236, doi:10.1002/2013JC009412. link
- Land, P.E., J.D. Shutler, R.D. Cowling, D.K. Woolf, P. Walker, H.S. Findlay, R.C. Upstill-Goddard, C.J. Donl (2013) Climate change impacts on sea-air fluxes of CO₂ in three Arctic seas: a sensitivity study using Eau observation, *Biogeosciences*, 10, 8109-8128, doi:10.5194/bg-10-8109-2013. link

- Goddijn-Murphy, L., D.K. Woolf, B. Chapron, P. Queffeulou (2013) Improvements to estimating the air-sea g transfer velocity by using dual-frequency, altimeter backscatter, *Remote Sensing of Environment*, 139, 1doi:10.1016/j.rse.2013.07.026. link
- Goddijn-Murphy, L., D.K. Woolf, C. Marandino (2012) Space-based retrievals of air-sea gas transfer velocities using altimeters: Calibration for dimethyl sulfide, *Journal of Geophysical Research*, 117, C08028, doi:10.1029/2011JC007535. link

Published OceanFlux advances

Advances in methods, tools, assessment, community partnerships and data provision.

Journal publications

- Shutler JD, Quartiy GD, Donion CJ, Sathyendranath S, Platt T, Chapron B, Johannessen JA, Girard-Ardhuin F., Nightingale PD, Woolf DK, Høyer JL (2016), Progress in satellite remote sensing for studying physical processes at the ocean surface and its borders with the atmosphere and sea ice, *Progress in Physical Geography*, 40: 215-246, doi:10.1177/0309133316638957. link
- 2. Shutler JD, Land PE, Piolle J-F, Woolf DK, Goddlin-Murphy L, Paul F, Girard-Ardhuin F, Chapron B, Donion CJ

That's it!

All of this work was only possible through collaborating with international community and through using EO, models and in situ in synergy.

All publications and data are freely available on the project website: www.oceanflux-ghg.org

Journal of Geophysical Research - Oceans, 119, 1217-1236, doi:10.1002/2013JC009412. link

- Land, P.E., J.D. Shutler, R.D. Cowling, D.K. Woolf, P. Walker, H.S. Findlay, R.C. Upstill-Goddard, C.J. Donl (2013) Climate change impacts on sea-air fluxes of CO₂ in three Arctic seas: a sensitivity study using Ear observation, *Biogeosciences*, 10, 8109-8128, doi:10.5194/bg-10-8109-2013. link
- Goddijn-Murphy, L., D.K. Woolf, B. Chapron, P. Queffeulou (2013) Improvements to estimating the air-sea g transfer velocity by using dual-frequency, altimeter backscatter, *Remote Sensing of Environment*, 139, 1doi:10.1016/j.rse.2013.07.026. link
- Goddijn-Murphy, L., D.K. Woolf, C. Marandino (2012) Space-based retrievals of air-sea gas transfer velocities using altimeters: Calibration for dimethyl sulfide, *Journal of Geophysical Research*, 117, C08028, doi:10.1029/2011JC007535. link

International Space Science Institute (ISSI) Working Group

Edit View	/ History	Bookmarks	Window	v Help			_	_	-		1	1) *	S	•	47% 🔳	: Thu	17:4	48 J
1979 (Jacob) - 1979 (J	1998	N	11-2		ISSI Workin	ing Gi	Group	led by	y Jamie	Shutl	er								
+ 🗠 ww	w.issibern.ch	/workinggroups,	/atmosgas	exchange/															
Booking UoE	Click Travel	UoE Expenses	Apple	Altmetric i	tl														
ISSI Working Group Led by Jamie Shutler The purpose of this working group is to brin researchers working in the field of atmosph Earth observation to i) identify and formular <i>situ</i> data synergies towards improving our sources, sinks and budgets of greenhouse routine long-term space-asset-based monit							ring to ohere- ate ne r unde e gase nitorin	gethe ocear w mu rstand s and g of th	erke hint Iti-s ding lii)id he o	ey int erac atelli of ti dent cear	erna tion ite, r he pa ify a hic si	and and athw road	al satel l anc ays, lmap f CO	ps lite in for	iearch				
			INSTIT	UTE	Ath	mo	ospi	nere	9-00	ear	I G	as	EXC	nan	ige	2			_

Restricted Area

Home

Location

Meetings

Members