The other CO₂ problem from a different angle: Studying Ocean Acidification using satellite Earth observation

Jamie Shutler, Fanny Girard-Ardhuin, Peter Land, Helen Findlay, Roberto Sabia, Ian Ashton, Bertrand Chapron, Jean-Francois Piolle, Antoine Grouazel, Nicolas Reul, Yves Quilfen, Joe Salisbury, Doug Vandemark, Richard Bellerby, Punyasloke Bhadury, Ian Ashton

- Oceans annually absorbs ~25% of anthropogenic CO₂ emissions.
- This lowers the pH of sea water and can lead to a decrease in calcium carbonate saturation state, with potential implications for marine animals, especially calcifying organisms.
- Measuring SST and salinity and any two of the four "key" parameters (C_T, A_T, pCO₂ and pH) enables the carbonate system to be monitored.

- Understanding of Ocean Acidification has been limited by availability of carbonate system data
- In 2012, OA researchers formed the Global OA Observing Network to bring together datasets, research and resources

- Algorithms using in situ hydrographic, Earth observation and/or model data have been developed
- Increase in data, e.g. from the Ship of Opportunity Programme and data buoys provides opportunity to test algorithms

- Many regional OA parameter algorithms exist that use combinations of inputs that could exploit satellite data.
- Are the new satellite salinity data of any use?

Measuring sea surface salinity from space

 ESA SMOS and NASA-CONAE Aquarius were launched in 2009 and 2011, both measuring global SSS

Review and forward look paper

pubs.acs.org/est

Salinity from Space Unlocks Satellite-Based Assessment of Ocean Acidification

Peter E. Land,^{*,†} Jamie D. Shutler,[‡] Helen S. Findlay,[†] Fanny Girard-Ardhuin,[§] Roberto Sabia,[∥] Nicolas Reul,[§] Jean-Francois Piolle,[§] Bertrand Chapron,[§] Yves Quilfen,[§] Joseph Salisbury,[⊥] Douglas Vandemark,[⊥] Richard Bellerby,["] and Punyasloke Bhadury^V

[†]Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.

[‡]University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K.

⁵Institut Francais Recherche Pour LExploitation de la Mer, Pointe du Diable, 29280 Plouzané France

^{II}Telespazio-Vega U.K. for European Space Agency (ESA), ESTEC, Noordwijk, The Netherlands

¹Ocean Processes Analysis Laboratory, University of New Hampshire, Durham, New Hampshire 3824, United States

"Norwegian Institute for Water Research, Thormøhlensgate 53 D, N-5006 Bergen, Norway

^VDepartment of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741 246, West Bengal India

Highlights that salinity from space enables us to monitor and study alkalinity-salinity relationship

Review and forward look paper

pubs.acs.org/est

Salinity from Space Unlocks Satellite-Based Assessment of Ocean Acidification

Case Study Regions

5 regions

European Space Agency Pathfinders Ocean Acidification

- Evaluate existing empirical algorithms using satellite, climatological and re-analysed in situ data as inputs.
- Evaluation of algorithms in different regions using all possible inputs and compare to an example Earth System model (HadGEM2-ES).
- Determine if satellite observed inputs outperform, equals or deteriorates performance of empirical algorithms.
- Rank performance to determine optimum algorithm and input (termed model).

European Space Agency Pathfinders Ocean Acidification

Evaluate existing empirical algorithms using satellite climatological

Massive data collation and quality control effort

> 100 TB of satellite data from >15 satellite sensors
> 14,000,000 in situ data

deteriorates performance of empirical algorithms.

• Rank performance to determine optimum algorithm and input (termed model).

Earth observation data

No.	Sensor/name (version)	Spatial resolution (temp. resolution)	Temporal period	Geographic coverage	Parameters	References	Data held
1.	Cryosat-2 (GlobWave GDR)	~300 m along track, ~4 km across track (daily, monthly)	2010- present	Global	U10, Ice coverage, Ice thickness	Laxon et al., (2013)	Yes
2.	SMOS (CATDS v2)	$0.25^{\circ} \times 0.25^{\circ}$ (monthly) $0.5^{\circ} \times 0.5^{\circ}$ (daily)	2010- present	Global	SSS, U10	Font et al. (2010)	Yes
3.	MERIS (3 rd reprocessing)	RR 1km (daily, monthly)	2002-2012	Global	Rrs, chl	Rast et al. (1999)	Yes
4.	MODIS- Aqua (Seadas 7)	1 km, 4 km, 9 km (daily, monthly)	2002- present	Global	Rrs, chl, SST	NASA Ocean colour website oceancolor.gsfc.nasa.gov	Yes
5.	AATSR	1 × 1 km (daily, monthly)	2002-2012	Global	SSTskin	-	Yes
6.	ESA SST CCI (ARC v1.1.1)	$0.1^{\circ} \times 0.1^{\circ}$ (monthly)	1992-2012	Global	SSTskin, SSTsub	Merchant et al. (2012)	Yes
7.	ESA Ocean Colour CCI (v0.95)	4 × 4 km (daily, monthly)	1997-2012	Global	Rrs, chl	Brewin et al., (2012)	
8.	RA2 (GlobWave GDR)	400 m along track, 80 km across track at equator over 35	2002-2012	Global	U10	www.gobwave.info	Yes

Publically available In situ data

No.	Dataset name	Temporal period	Geographic location	Parameters	Ν	References	Access secured
1.	SOCAT v2.0	2005-2011	Global (incl. CS regions *)	fCO _{2W} , SSS, SST	6,000,000+	Bakker et al. (2013)	Yes
2.	LDEO v2012	1980- present	Global (incl. CS regions *)	pCO _{2W} , SSS, SST	6,000,000+	Takahashi et al. (2013)	Yes
3.	GLODAP	1970-2000	Global	A _T , DIC, SSS, SST, Nitrate	10,000+	Key et al. (2004)	Yes
4.	CARINA AMS v1.2, CARINA ATL v1.0, CARINA SO v1.1	1980-2006	Arctic, Atlantic, Southern Ocean	A _t , DIC, SSS, SST	1500+	CARINA group (2009a) CARINA group (2009b) CARINA group (2010)	Yes
5.	AMT	1995- present	Atlantic	pCO _{2W} , SSS, SST, Chl, pH	1000+	Robinson et al., 2009	Yes
6.	NIVA Ferrybox	2008- present	Arctic	pCO _{2W} , A _T , DIC, SSS, SST	1000+	Yakushev and Sørensen (2013)	Yes
7.	OWS Mike	1948-2009	Arctic	A _T , DIC, SSS, SST, Chl	1000+	Skjelvan et al. (2008)	Yes
8.	RAMA Moored buoy array	2007- present	Bay of Bengal	SSS, SST	1000+	McPhaden et al. (2009)	Yes
9.	ARGO floats	2003- present	Global	SSS, SST	1,000,000+		Yes

New in situ data from collaborators

No.	Collection method	Temporal period	Geographic location	Parameters	N	Contact/owner	Access promised
1.	Research cruise	Nov-Dec 2013	Bay of Bengal	SSS, SST, A _T , pCO _{2W} , DIC, pH	30+	Dr Joe Salisbury (see letter of support)	Yes
2.	RAMA Moored buoy array	2007- present	Bay of Bengal	SSS, SST	100+	Dr Joe Salisbury (see letter of support)	Yes
2.	Research cruises	Dec 2013- onwards	Bay of Bengal	A _T , DIC, SSS, SST, pCO _{2W}	100+	Dr Punyasloke Bhadury (See letter of support)	Yes
3.	Research expedition	Aug 2013, 2014	Arctic	A _T , DIC, SSS, SST	50+	Dr Helen Findlay	Yes
4.	Research expedition	Mar-Sep 2014	Arctic	A _T , DIC, SSS, SST	50+	Dr Helen Findlay	Yes

Overview of methods

- 1. Convert all data (*in situ*, climatology, model, satellite) binned to daily and monthly 1° x 1°.
- 1. Identify locations and times where we have *in situ* carbonate parameters to compare with estimates generated from empirical algorithms.
- 2. Generate performance statistics for C_T , T_A , pH and pCO₂:
 - a. Calculate all statistics for all possible comparisons for each model (optimal characterisation of each model e.g. accuracy assessment).
 - b. Calculate all statistics for only common data points for each model to produce an aggregated model performance (rank model performance based on choice of input data).

Overview of methods

1. Convert all data (*in situ*, climatology, model, satellite) binned to daily and monthly 1° x 1°.

Very few pH data coincident or usable.

Performance of pCO₂ models was very poor.

So here we are presenting C_T and T_A results

(optimal characterisation of each model e.g. accuracy assessment).

b. Calculate all statistics for only common data points for each model (rank model performance based on choice of input data).

Algorithms tested

5 region (Global, Amazon plume, Caribbean, Bay of Bengal, Arctic Barents)

Possible inputs to choose from:

- 5 sets of SST data
- 7 sets of salinity data
- 3 sets of nitrate data

Total alkalinity (T_A) – the ability for water to neutralise an acid:

• 5 algorithms (HadGEM2-ES,Lee2006,Cai2010,Lefevre2010,Takahashi2013)

Total carbon (C_T) – also called Dissolved Inorganic Carbon

• 4 algorithms (HadGEM2-ES,Lefevre2010,Bonou2016,Lee2000)

Results in >?? possible combinations and permutations.

T_A - model accuracy

T_A- best salinity ranking

C_T – model accuracy

C_{T} - best salinity ranking

Conclusions

- 1. Possible to explore the salinity-alkalinity relationship using satellite data.
- 2. Globally, all models and inputs give the similar accuracy (mean $T_A RMSE \sim 59$ µmol kg⁻¹, mean $C_T RMSE \sim 35-50$ µmol kg⁻¹).
- 3. Caribbean, all models (except HadGEM2-ES) and inputs give the same accuracy (mean $T_A RMSE \sim 20 \ \mu mol \ kg^{-1}$, mean $C_T RMSE \sim 20 \ \mu mol \ kg^{-1}$).
- 4. For both T_A and C_T Remote sensing salinity driven model performance is near identical to that of in situ salinity in the Caribbean (and to a lesser extent in the Bay of Bengal).
- 5. For both T_A and C_T Remote sensing salinity (SMOS) out performs all others for low salinity amazon plume region. (mean T_A RMSE ~ 90 µmol kg⁻¹, mean C_T RMSE ~ 75 µmol kg⁻¹).
- 6. Now preparing data for public release:
 - a. C_T , T_A and corresponding Seacarb derived pH and pCO₂ spatial data for each region in 2010.
 - b. A preliminary remotely-sensed upwelling indicator dataset (global coverage, 2010present day, daily and monthly temporal resolution, Ekman pumping and Ekman transport components).

http://www.pathfinders-oceanacidification.org

Case studies

Zoom

Meetings & Events

News

Links

Contacts

... Latest news

Published on the 17/02/2015 Publication

The project team has published a paper

Published on the 20/01/2015 Sentinel-3 for Science Workshop

Read the news

Published on the 25/11/2014 **Conference presentations**

First developments and results of

Barents sea

It is increasingly recognised that the polar oceans (Arctic and Antarctic) are particularl...

Sensitivity of SMOS in Polar waters

- Sensitivity of SMOS brightness temperature to salinity in the Arctic is around 50% of the sensitivity in the tropics.
- Current smallest errors in the tropics are 0.2-0.3 PSU, so errors in Arctic waters are of the order 0.5 PSU
- Error propagation using example TA algorithm from Arrigo et al (2010) gives a sensitivity of 2.7 % PSU⁻¹

