Hourly to decadal variability of sea surface carbon parameters in the north western Mediterranean Sea

J. Boutin, L. Merlivat, D. Antoine

Location of the experiment: Boussole

Fig. 1. The area of the northwestern Mediterranean Sea showing the southern coast of France, the island of Corsica, the main current branches (gray arrows), and the location of the DYFAMED site (black star) and the BOUSSOLE buoy (red star) in the Ligurian Sea.

Goal of the study

- pCO₂ at 2 depths during 3 years (2013-2015):
 - Strong vertical variability between 3m & 10m depth during summer => Importance of measuring pCO₂ close to the surface ocean in stratified conditions
 - Comparison with measurements taken 18 years ago at DYFAMED site by CARIOCA sensors => for the first time estimate decadal variability from 2 mutiyear time series of hourly pCO₂ measurements

Outline

- Data and method
- High frequency variability during summer 2014
- Decadal variability (1995-1997 versus 2013-2015)

CARIOCA/BIOCAREX sensor

Dye enveloppe

Membrane semipermeable to gas -Spectrophotometer (3 λ) See description of measurement principle in (Copin-Montegut et al., Mar. Chem. 2004)

Water intake

41cm

- \Rightarrow Hourly measurements of CO₂ partial pressure, pCO₂ + CTD : salinity and temperature
- \Rightarrow pCO₂ at constant temperature (13°C) using Takahashi's relationship (4.23% °C⁻¹)
- \Rightarrow Total alkalinity from S (using a relationship derived from monthly surface samples): TA= 87.664 S - 786.5 σ =4.1 μ mol kg⁻¹
- \Rightarrow Dissolved Inorganic Carbon (DIC) and pH using CO₂ dissociation constants of Mehrbach et al. (1973) as refitted by Dickson and Millero (1987) and solubility from Weiss (1974).

Boussole mooring equipped with 2 CARIOCA/BIOCAREX pCO2 sensors

- BOUSSOLE 'Bouée pour acquisition d'une série optique à long terme' (2005)
- ANR BIOCAREX ('BIOoptics and CARbon Experiment'): add 2 miniaturized CARIOCA pCO₂ sensors at 3m and 10m depth (2012) to complement optical radiometer measurements

2013-2015 time series

Strong stratification between 3m and 9m depth during Summer 2014

Spectral analysis Summer 2014

3m: inertial waves dominates hourly variability of pCO₂ although diurnal cycle on T

10m: both T and pCO₂variability dominated by inertial waves

Wavelet analysis

Spectre de puissance en ondelette de la température

10m

Variability between 1995-1997 and 2013-2015 periods

CARIOCA sensor at 2m depth on DYFAMED mooring (Hood and Merlivat 2001)

Figure 4. (a) fCO_2 data from all three years; 1995 = dark triangles, 1996 = medium gray squares, and 1997 = light gray diamonds. (b) Temperature-normalized fCO_2 data from all three years; symbols are the same as for (a). (c) Sea-surface temperature data from all three years.

(in the following we remove the 10m depth measurements during summer)

pCO₂ at 13° C as a function of temperature

pCO₂ at 13° C as a function of temperature

Temperature,°C

16

Table 1

sea surface mixed layer	fCO2 at 13°C µatm	σ µatm (1)	N number of data	confidence interval, µatm (>99.7%)	d fCO2 at 13°C μatm	DIC µmolkg ⁻¹	pH at13°C	d DIC µmolkg ⁻¹	dpH unit	d DIC annual µmolkg¹yr⁻¹	d pH annual pH unit yr ⁻¹
All tomporaturo				3σ/√N							
Antemperature											
1995-1997	282.2	38.8	6450	1.45		2229.7	8.1945				
						N=3	N=3				
						σ=0.96	σ=0.0015				
2013-2015	321.7	33.2	27852	0.60	39.5+/1.57	2259,1	8.1477	29.4+/-1.8	-0.0468+/-	1.63+/-0.10	-0.0026+/-
						N=3	N=3		0.0027	1 6 2	0.0002
T>18	°C					σ=0.33	σ=0.0005			1.03	
1 > 10	C										
1995-1997	256.9	15.1	3617	0.75		2208,0	8.2276				
						N=3	N=3				
						σ=0.56	σ=0.0008				
2013-2015	289.6	13.9	10184	0.41	32.7+/0.86	2235,6	8.1853	27.6+/-1.1	-0.0423+/-	1.53+/-0.06	-0.0024+/-
						N=3	N=3		0.0015	1 5 2	0.0001
						σ=0.26	σ=0.0004			1.55	

(1), Larger range of variability when including winter data

Assuming that the surface ocean follows the CO_2 increase in the atmosphere (+35µatm at Lampedusa station) the surface ocean DIC should have increased by ~1.2 µmol kg⁻¹ yr⁻¹. This explains only 72% of the DIC increase we observe supporting the hypothesis of another source of anthropogenic carbon entering in the Mediteranean sea like Atlantic waters through the Gibraltar straight (Palmieri et al. 2015, Schneider et al 2010, Huertas et al., 2009) 17

Summary

-During Summer, western mediterranean sea is very stratified => importance of:

- measuring pCO_2 as close as possible to the surface, otherwise strong impact of inertial waves

-monitor high frequency variations (high influence of wind)

-With respect to measurements performed 18 years ago, DIC in surface ocean increases by 25% more than expected from atmospheric CO_2 increase: for the first time, surface ocean measurements support the hypothesis of another source of anthropogenic carbon than the atmosphere in the Mediterranean Sea (Palmieri et al. 2015, Schneider et al 2010, Huertas et al. 2009 suggest that anthropogenic carbon from the Atlantic Ocean enters in the Mediteranean Sea through the Gibraltar straight)

\Rightarrow Importance of long term monitoring of high frequency variability of pCO₂