On the fetch dependency of air-water gas exchange

Angelika Klein September 2016

Heidelberg Collaboratory

for Image Processing

Investigation of the mass boundary layer

- fetch dependency of boundary layer: Understanding mechanisms driving small scale air-sea gas exchange at low windspeeds
 - boundary layer streaks
 - microscale breaking

Microscale breaking and Schmidt number exponent

 $k \propto u_* * Sc^{-n}$

Aeolotron with beach

Krall, 2014

- annular wind-wave facility
- diameter: 10 m
- water volume: 18000 l

- water height: 2m
- flume width: 61 cm
- Operation with unlimited fetch and fetch between 0 and 27 m by using a wave absorbing beach

Boundary Layer Imaging

Boundary Layer Imaging

Kräuter., 2015

fraction of mass boundary layer thickness captured by the technique can be adjusted by varying ammonia concentration in the air compartment

Wave Slope Imaging by Refraction

- Measures two-dimensional distribution of surface slope
- More than 1500 frames per second
- 0.22 mm resolution
- Observes 16.9 cm × 19.8 cm water patch

laminar flow

u10 = 4.6 m/s; fetch = 2 m

laminar flow

streaks

few microscale breaking

many microscale breaking

covered with a wave absorber laminar flow wave absorber 8.3 m/s 6.2 m/s 4.6 m/s streaks wind few microscale breaking

water surface of Aeolotron partly

many microscale breaking

laminar flow	few microscale breaking
streaks	many microscale breaking

Boundary layer development with fetch – wavelengths and mean square slopes

Conclusion

- Annular Aeolotron gives interesting insight into the fetch dependency of air-sea gas transfer, because with the basic same geometry, measurements at short fetches (0 - 27 m) and infinite fetch can be made.
- predominant wavelength with finite fetch leads to early onset of microscale breaking
- next steps:
 - direct determination of local gas transfer velocity from BLI
 - comparison with active thermography

Boundary Layer Imaging

Kräuter, 2015

fraction of mass boundary layer thickness captured by the technique can be adjusted by varying ammonia concentration in the air compartment

Fluorescence Intensity \propto Thickness of Boundary Layer