

Constraining Sea–air CO₂ Fluxes from Surface-Ocean Carbon Data

Christian Rödenbeck

Max Planck Institute for Biogeochemistry, Jena

D. C. E. Bakker, P. Landschützer, R. Keeling, and M. Heimann

In collaboration with

N. Gruber, Y. Iida, A.R. Jacobson, S. Jones, N. Metzl, S. Nakaoka, A. Olsen, G.-H. Park, P. Peylin, K.B. Rodgers, T.P. Sasse, U. Schuster, J.D. Shutler, V. Valsala, R. Wanninkhof, J. Zeng

MPI-BGC

Jena

SURFACE OCEAN pCO2 MAPPING INTERCOMPARISON

Many thanks to:

Data contributors, DKRZ, CarboChange, IMBER/SOLAS

Motivation

Ocean process models

[Wanninkhof et al., RECCAP (2013)]

Motivation

Atmospheric inversions

[Peylin et al., RECCAP (2013)]

Ocean carbon data collections:

- **SOCAT** v3 *p*CO₂ [www.socat.info/] - **LDEO** v2014 *p*CO₂ *[cdiac.ornl.gov/oceans/LDEO_Underway_Database/]* - **GLODAP** v2 [DIC], [Alk] *[cdiac.ornl.gov/oceans/glodap/]*

Data density / distribution

Surface Ocean Carbon Atlas -- Version 2

[www.socat.info]

Data density / distribution

Where 275 ≦ fCO2 rec ≦ 725

Bridging data gaps

- → Interesting complementarity
- → Extracting robust features

SOCOM: Collating 14 mapping methods

SURFACE OCEAN pCO2 MAPPING INTERCOMPARISON

Monthly pCO2 (uatm)

Seasonality:

Most methods roughly agree on phasing and amplitude

(also to Takahashi et al., 2009)

ightarrow Seasonality well constrained from data

Interannual Variations (IAV):

- secular rise
- Tropical Pacific:
 - * Biome with largest IAV
 - * Link to ENSO

Interannual Variations (IAV):

- secular rise
- Tropical Pacific:
 - * Biome with largest IAV
 - * Link to ENSO

Methods selected / weighted by relative IAV mismatch to SOCATv2

better match to data \rightarrow also closer mutual agreement

Interannual Variations (IAV):

- secular rise
- Tropical Pacific:
 - * Biome with largest IAV
 - * Link to ENSO

Data-covered pixels only: (SOCAT v2)

- Smaller ensemble spread
- Altered time variations
 - \rightarrow sampling bias (seasonally, spatially)
 - \rightarrow challenge for mapping

First results: Sea–air CO₂ fluxes

[Rödenbeck et al., BG (2015)]

 $f = k(u^2) \cdot \varrho L \cdot (p \mathsf{CO}_2 - p \mathsf{CO}_2^{\mathsf{atm}})$

ightarrow Flux IAV dominated by $p CO_2$ IAV

First results: Sea–air CO₂ **fluxes**

[Rödenbeck et al., BG (2015)]

 $f = k(u^2) \cdot \varrho L \cdot (p \mathsf{CO}_2 - p \mathsf{CO}_2^{\mathsf{atm}})$

ightarrow Flux IAV dominated by $p \text{CO}_2$ IAV

ightarrow Flux IAV dominated by $p \text{CO}_2$ IAV

Bridging data gaps

- → Interesting complementarity
- → Extracting robust features

SOCOM: Collating 14 mapping methods

SURFACE OCEAN pCO2 MAPPING INTERCOMPARISON

Bridging data gaps

- → Interesting complementarity
- → Extracting robust features

SOCOM: Collating 14 mapping methods

SURFACE OCEAN pCO2 MAPPING INTERCOMPARISON

(18.%) Jena oc_v1.4S (28.%) ETH-SOMFFN2016 90°S -270 -180 -90 Yearly CO2 flux (PgC/yr) 0.5 0.4 0.3 0.2 (18.%) Jena oc_v1.4S 0.1 Yearly pCO2 mismatch (uatm) Yearly pCO2 (uatm) -10 -30 -50

"Benchmark":

Keep seasonality+trend, but no IAV

 \rightarrow Mismatch \approx signal size

 \rightarrow "100% error"

(18.%) Jena oc_v1.4S

--- (100.%) Jena oc_v1.4S Benchmark

Interpolation:

Time-dep. DoF's \rightarrow Any IAV possible

Regression: Constant DoF's

 \rightarrow IAV from drivers

--- (18.%) Jena oc_v1.4S --- (121.%) Jena oc_v1.4S (CrossVal5yr0)

 \rightarrow Data-only interpolation cannot bridge multi-year gaps

 \rightarrow Regression against drivers (SST, SSS, Chl-a, atm. CO₂) offers some bridging capacity

— (62.%) ETH-SOMFFN2016 (Unconstrained periods)

 \rightarrow Regression against drivers (SST, SSS, Chl-a, atm. CO₂) offers some bridging capacity

Chl-a data only available since 1998

- do SST and SSS suffice?

Southern Ocean – sparse data

-30 -50

Southern Ocean – sparse data

---- (47.%) ETH-SOMFFN2016 ---- (106.%) ETH-SOMFFN2016 (Unconstrained periods) ---- (53.%) ETH-SOMFFN2016, regr. SST & SSS

Southern Ocean - sparse data

- \rightarrow Bridging difficult & difficult to test
- \rightarrow again main modes similar w/o Chl-a

Southern Ocean – sparse data

- \rightarrow Bridging difficult & difficult to test
- \rightarrow again main modes similar w/o Chl-a
- \rightarrow Decadal trends also from data directly

Global Ocean flux – affected by data-sparse regions

→ Complementary mapping methods (interpolation, regression) help to assess robustness

Redfield stoichiometry

 $R_{\text{O:C}} \approx -1.4$

• Transport+Mixing:

Redfield stoichiometry

 $R_{\text{O:C}} \approx -1.4$

• Transport+Mixing:

Redfield stoichiometry

 $R_{\text{O:C}} \approx -1.4$

• Transport+Mixing:

Redfield stoichiometry

 $R_{\text{O:C}} \approx -1.4$

• Transport+Mixing:

Carbon Oxygen

Aim: Quantify variability of ocean biogeochemistry from data

Aim: Quantify variability of ocean biogeochemistry from data

pCO_2 constraint & mapping methods:

- Well-constrained seasonality •
- IAV constrained e.g. in Eq. Pac. •

Aim: Quantify variability of ocean biogeochemistry from data

*p*CO₂ constraint & mapping methods:

Well-constrained seasonality • IAV constrained e.g. in Eq. Pac. •

Interpolation: Can *fit any IAV signals* in the data **Regression:** Can *bridge* temporal data gaps Robustness check through complementary methods

Aim: Quantify variability of ocean biogeochemistry from data

*p*CO₂ constraint & mapping methods:

Well-constrained seasonality • IAV constrained e.g. in Eq. Pac. •

Interpolation: Can *fit any IAV signals* in the data **Regression:** Can *bridge* temporal data gaps Robustness check through complementary methods

Multiple constraints:

- surface-ocean $pCO_2 \bullet$
 - atmospheric CO₂ •
- atmospheric $O_2/N_2 \bullet$

combined through mixed-layer scheme

