The Effect of Changing Wind Speeds on Global Air-Sea CO₂ Fluxes

Rik Wanninkhof, NOAA/AOML, Miami US.
Joaquin Trinanes, Univ. Santiago de Compostela, Santiago,

Changes in wind speed 1987-2015 CCMP-2 winds

Motivation focused on the global carbon cycle

- ≈25 % of the anthropogenic CO₂ is sequestered [over time time periods] by the ocean
- Changes in Air-Sea CO_2 fluxes can have a profound effect on this uptake and estimates of future atmospheric CO_2 levels/climate mitigation policies (COP-21)
- Gas transfer can effectively be parameterized with wind over the ocean
- Using new quality wind product (CCMP-2) wind speed changes can be assessed at high resolution
- Overall increases in winds should lead to increases in air-sea CO₂ fluxes

Approach

Effect of wind alone, isolating it from the predominant effect of changes in ΔpCO_2

- $F = k s \Delta pCO_2$
- ΔpCO₂ monthly 4 by 5° climatology Takahashi centered on 2005 (unpublished) [not time varying]
- $k_{660} = 0.24 < U_{10}^2 > or$
- $k_{660} = 3 + 0.1 < U_{10} > + 0.064 < U_{10}^2 > + 0.011 < U_{10}^3 >$ ["hybrid model"] [Wanninkhof et al., 2009]
- CCMP-2 winds and moments monthly 1 by 1° from July 1987- July 2015
 [www.remss.com/measurements/ccmp]
- Focus on long term trends (linear).
- Of note, Climatology shows [low] net uptake ≈1.3 Pg C /yr

1988

R. Wanninkhof et al.: Global ocean carbon uptake: magnitude, variability and trends

Table 1. Summary of different components of the globally integrated sea-air CO₂ flux estimate including the sources and magnitude of the uncertainty.

	Year 2000 t	from Takaha	ashi et al. (2009)	Updated estimatea	
	Pg Cyr-1	%	Pg Cyr ⁻¹	Pg Cyr-1	Pg C yr ⁻¹
Net flux	-1.38	ZVANE.	- 40.5	-1.18	
Δp CO ₂	- 645 37	±13%	±0.18		±0.18
k		±30 %	±0.42		±0.2
Wind (U)		±20 %	±0.28		±0.15
$< d(pCO_{2w}) dt^{-1} > b$		±35 %	±0.5		±0.5
Total .		±53 %	±0.7		
Undersampling ^c	-0.2			-0.2	
Riverine carbon ^d	0.4		±0.2	0.45	±0.2
Coastal area				-0.18	
Anthro CO ₂ flux	-2.0		±0.8e	-2.0	±0.6

Background: Global Air-Sea CO₂ flux patterns

Difference: Net ≈0

Red: $0.24 < U_{10}^2 > \text{ more release/less uptake}$

Blue: 0.24<U₁₀²> less release/more uptake

More uptake in Subtropics, more release Eq Pac

Background: Trends

Due to atmospheric CO₂ increase: -0.15 Pg C/yr/decade (increased uptake)

From data based approaches: + 0.2 Pg C/yr/decade (1991-2001);

-0.8 Pg C/yr/decade (2001-2011)

Table 3. Median sea-air anthropogenic CO2 fluxes for the different approaches centered on year 2000.

Approach	Anthr. CO ₂ flux	Uncertainty	IAVe	SAVf	Trend	
	Pg C yr ^{−1}	Pg Cyr ^{−1}	Pg Cyr ^{−1}		(Pg C yr ⁻¹) decade ⁻¹	
Empirical	-2.0	±0.6a	0.20	0.61	-0.15	
OBGCM	-1.9	±0.3b	0.16	0.38	-0.14	
Atm. Inversion	-2.1	±0.3°	0.40	0.41	-0.13	
Ocean Inversion	-2.4	±0.3d			-0.5^{j}	
Interior (Green function) ^g	-2.2	±0.5	-	-	-0.35	
O- Ath	2.2	106				

R. Wanninkhof et al.: Global ocean carbon uptake: magnitude, variability and trends Biogeosciences, 10, 1983–2000, 2013 www.biogeosciences.net/10/1983/2013/

C. Rödenbeck et al.: An ensemble of pCO_2 -based sea-air CO_2 flux estimates

Background: The 1: 1: 0.2 rule

Changes due to changes in pCO₂ and wind

- ightharpoonup 1 μatm increase in ΔpCO₂ will cause a 0.2 Pg C increase in global uptake (15 % of net global ocean CO₂ uptake)
- a 1 m/s increase in wind speed will increase the uptake by 0.2 Pg C as well

Global Wind patterns: Higher winds in regions of uptake

Trends: Global winds

Trend in global wind (1988-2014):

<u>: 0.14 m/s decade (≈2 %)

 $\langle u^2 \rangle$: $\approx 3 \%$ decade

If 1: 1: 0.2 "rule" holds: 0.05 Pg C: 1987-1998 0.08 Pg C 1987-2015

Quantitative assessment: the gas exchange coefficient, (k s)

F = k s pCO₂

k & s are (opposing) functions of SST through solubility and Schmidt number $k*s = mol/m^2/yr/uatm$ (Also called gas transfer coefficient (Takahashi et al. 2009))

Absolute magnitude of ks Fourfold range over global ocean

Red: $0.24 < U_{10}^2 > larger ks than hybrid$ Blue: $0.24 < U_{10}^2 > smaller ks than hybrid$

Trends: the gas exchange coefficient, k s

Greatest trend:
Equatorial Pacific
40 °S in Southern Ocean
Western boundary currents

Largest difference in trends:

Equatorial Region: quadratic larger trend in ks Southern Ocean: hybrid larger trned in ks

Red: 0.24<U₁₀²> larger trend than hybrid

Blue: $0.24 < U_{10}^2 >$ smaller trend than

uptake

Trends: Global Sea- Air CO₂ Fluxes (Spatial distribution)

Areas of efflux: more release over time Areas of uptake: more sequestration

Trend in Sea-Air CO_2 Flux: $0.24 < U_{10}^2 >$

Trend in Sea-Air CO₂ Flux: Polynomial

Red: $0.24 < U_{10}^2 > \text{ more release/less uptake}$ Blue: $0.24 < U_{10}^2 > \text{ less release/more uptake}$

Changes: global sea-air CO₂ fluxes by year

Global Ocean Trend in Sea-Air $\rm CO_2$ fluxes due to changes in winds: 0.015 \pm 0.009 Pg C decade (slightly less uptake)

Cause of small trend: Balance of effluxes and influxes

Patterns of Trends: Zonal distribution of Fluxes

Year

Patterns of Trends: Zonal distribution of Fluxes

Year

Patterns: Zonal distribution of annual trends in Fluxes

$$k_{660} = 3 + 0.1 < u_{10} > + 0.064 < u_{10}^2 > + 0.011 < u_{10}^3 >$$

Trends: winds for the Equatorial Pacific (14 °N-14 °S, 130 °E, 80 °W)

Changes in <u>

1988-2014: 0.28 m/s/decade (4.5 %/decade)

1993-2011: 0.38 m/s/decade (6.1 %/decade)

Changes in <u2>

1988-2014: 3.5 (m/s)²/decade (7.7%/decade)

1993-2011: 4.6 (m/s)²/decade (10%/decade)

Trends: Fluxes and ks from the Equatorial Pacific

(14N-14S, 130 E, 80 W)

Changes in ks 1988-2014 (quadratic)≈ 7% decade 1993-2011 ≈ 11% decade Hybrid: changes 29 % less Changes in Flux 1988-2014 (quadratic)≈ 8% decade 1993-2011 ≈ 12% decade Hybrid changes: 31 % less

Year

Trends: Effluxes from the Equatorial Pacific (Local)

Trends: Changes in winds for the North Atlantic (> 50 °N)

Changes in <u> 1988-2014: 0.06 m/s/decade (0.5 %/decade)

Changes in <u²> 1988-2014: 1.4 (m/s)²/decade (1 %/decade)

No significant decadal changes in wind

CO₂ Influx into the North Atlantic

(> 50 °N)

Changes in ks 1988-2014 (quadratic)≈ 1% decade (Hybrid) ≈ 1.5 % decade Hybrid changes: 46 % greater Changes in Flux (greater uptake) 1988-2014 (quadratic)≈ -1% decade (Hybrid) ≈ -1.6 % decade Hybrid changes: 46 % greater

Trends: Changes in winds for the Southern Ocean (50 °S- 62 °S)

Changes in <u> 1988-2014: 0.1 m/s/decade (1 %/decade)

Changes in <u²> 1988-2014: 2.7 (m/s)²/decade (2 %/decade)

CO₂ Influx into the Southern Ocean

(50 °S - 62 °S)

Changes in ks 1988-2014 (quadratic)≈ 2% decade (Hybrid) ≈ 2.7 % decade Hybrid changes: 36 % greater Changes in Flux (greater uptake) 1988-2014 (quadratic)≈ -3% decade (Hybrid) ≈ -3.7 % decade Hybrid changes: 25 % greater

Southern Ocean (50-62 °S: significant trends, small magnitude of fluxes

Conclusions

The effect of changing winds using a constant monthly pCO₂ climatology

- ➤ Global winds in the CCMP-2 product have increased by about 0.4 m/s over 26 years (1988-2014)
- ➤ Largest regional change is in the Equatorial Pacific with an increase of 0.7 m/s
- ➤ Change in global air-sea CO₂ fluxes relatively small due to compensation of increases with decreases
- ➤ Difference in quadratic and polynomial parameterizations has a small effect on trend in global scale fluxes with quadratic showing an increase in efflux and hybrid model showing no trend
- Fiffect of changes in wind is generally much smaller than impacts of changing ΔpCO_2 on fluxes with the direction of the trend (≈ 0.015 Pg C/decade being opposite and much smaller than the trend caused by changes of ΔpCO_2 (-0.15- 0.35 Pg C decade)