82 | University
Yk London

Effect of surface
contamination on
Isotropic-turbulence-
driven interfacial

gas transfer

Jan Wissink, Yasemin Akar
Brunel University London, UK

Herlina Herlina

Karlsruhe Institute of Technology,
Germany

http://images.wisegeek.com/



Background
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Interfacial Mass Transfer

Gas transfer ; | molecular diffusion 4mmp{turbulence in the water phase

J: gas flux

_Ipde) ] D: molecular diffusion
Advective-diffusive : {(j,) = [D w'c’) o concentration

w: vertical velocity

Gas transfer of low-diffusive gases (O,, CO,) is marked by a very thin
concentration boundary layer at the water side

Interfacial region 10-1000 pum

well mixed
Bulk region
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Pollution

Focus is on interfacial pollution by surfactants

Surfactants reduce the surface stress of water

Surface divergence typically leads to non-uniform surfactant
concentrations

Which is counteracted by the Marangoni effect trying to force
surface divergence to zero.
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Modelling Pollution Effects

Surface tension, o, depends on the pollutant concentration, y.

o=0(y)
After normalization define the Marangoni number by
do
Ma = _d_y

which we assume to be constant. From the model presented in
Shen et al., (2004) JFM, Vol. 506, after some algebra, we obtain:

ou _ MaRe 0y
0z interface We 0x
ov Ma Re 0y
9z T T We ay

interface
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u: x-velocity

V. y-velocity

Re: Reynolds number
We: Weber number

y: surfactant concentr.




Aim

To determine a parametrization of the effect of pollution on the
interfacial gas transfer velocity K,

For a clean (no pollution) interface K, scales as
K; o« Sc™1/2
where Sc is the Schmidt number.
For a very dirty interface
K; « Sc™2/3
What happens at (very) moderate levels of pollution?

K; xSc™1

Ma Re
We

The power g will likely depend on
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Problem Investigated
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Physical Problem

Grid-stirred-driven gas transfer

Convenient analogy to bottom shear induced turbulence

Gas flux (j)
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Computational Setup

Boundary conditions

Xq,Uq © X, X-velocity
X,,U, Y, y-velocity

various levels of contamination
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Simulations performed

Re Ma/\We

S30p0
S6p0 6
S1p2 1.2
SOp6 0.6
SOp12 0.12

For all DNS simulations:

128 x 128 x 212 mesh for the box of size 5L x 5L x 3L
Mesh is refined in the z-direction towards the surface
Surfactant Schmidt number = 2

Turbulent flow with Tu = 40% introduced at the bottom
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Numerical Method

Flow fields in main DNS and LES isobox are solved using fourth-order
discretisations of convection and diffusion.

A dual mesh strategy is used where up to five scalars can be solved
simultaneously on arefined mesh

A fifth-order-accurate WENO scheme is used for scalar convection,
combined with a fourth order central discretisation for scalar diffusion

(same in 2D for surfactant).
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Surfactant Diffusivity
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How important is Surfactant Diffusivity?

Surfactant distribution for various Sc =

surf
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How important is Surfactant Diffusivity?

Surfactant distribution for various Sc =

surf
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How important is Surfactant Diffusivity?

Effect on interfacial u-velocity at y/L = 2.5
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How important is Surfactant Diffusivity?

Effect on interfacial v-velocity at x/L = 2.5
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Preliminary Results
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Surface Divergence 3

Effect of increasing Re Ma/We
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Surface Divergence 3

Effect of increasing Re Ma/We
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Surfactant Concentration Distribution

Re Ma/We = 30.0

t=0.25 L/U

1.03
1.02
1.01

0.99
0.98
0.97
0.96
0.95
0.94

Brunel University London

20\




Surfactant Concentration Distribution

Re Ma/We =0.12

1=0.25 L/U
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Surfactant Concentration Distribution

Effect of decreasing Re Ma/We
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With decreasing Re Ma/We clean surface regions grow in size
In these regions K, will scale with Sc-1/2

In the remaining regions K, may scale with Sc2/3 ???
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Transfer Velocity Scaling

Effect of iIncreasing Re Ma/We
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Conclusions

« It was confirmed that the surfactant transport is largely
unaffected by the amount of diffusivity

 Even low levels of contaminations can have a large effect on
Interfacial gas flux

« With increasing Re Ma/We, the surface divergence, B,
becomes progressively damped

 Resulting in a quick transition to a K; « Sc~%/3 scaling which
Is typical for a no-slip surface (shear!!)

« At lower Re Ma/We areas on the surface will develop with a
zero surfactant concentration
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