PASSIVE OPTICAL MEASUREMENT OF VERY NEAR-SURFACE CURRENTS

BRIAN K. HAUS, NATHAN J.M. LAXAGUE

AIR-SEA GAS FLUX WORKSHOP, 2016
1. Present a technique which allows us to remotely observe the near-surface current profile. Demonstrate its capability in a laboratory study.
WHAT I HOPE TO ACCOMPLISH TODAY

2. Demonstrate the technique’s feasibility outside of the laboratory.
3. Use the method to study the near-surface current profile in the field environment.
What do we mean when we say “near surface” current?
HOW CAN WE OBSERVE THE “NEAR-SURFACE”?

There is a gap in the capability to observe near-surface current, with existing methods offering complementary, but incomplete measurements.
Short ocean surface waves are sensitive to very near surface currents (as well as wind, larger waves, surfactants etc.)
The deep water, gravity-capillary linear dispersion relation, in the presence of a background current...

\[\omega = \sqrt{gk + \frac{\sigma}{\rho}k^3 + kU \cos \theta} \]

\[(\omega - k \cdot \vec{U})^2 = gk + \frac{\sigma}{\rho}k^3 \]

\[U \cos \theta = \frac{1}{k} \left(\omega - \sqrt{gk + \frac{\sigma}{\rho}k^3} \right) \]

Giving way to:
IN OTHER WORDS...

Given this:

\[\frac{1}{k} \left(\omega - \sqrt{gk + \frac{\sigma}{\rho} k^3} \right) \]

We can get this:

\[U \cos \theta \]

i.e., the current vector
POLARIMETRIC SLOPE SENSING
(LAXAGUE ET AL. 2015)
FROM $x, y, & t$, WE WANT k_x, k_y, AND ω

A special camera acquires the high-resolution polarization state of light reflected from a patch of water. A three-dimensional Fourier transform is applied to the record, yielding a wavenumber-frequency spectrum.
APPLYING DISPERSION CURVE TECHNIQUE TO A NEW REGIME

Let’s take a slice in the peak short-wave direction.

Deviations from the full, deep water linear dispersion relation are interpreted as Doppler-shifting currents.

\[f = \frac{1}{2\pi} \sqrt{gk + \frac{\sigma}{\rho} k^3} \]

\[\Delta f = \frac{1}{2\pi} \left(\mathbf{k} \cdot \mathbf{U}_E \right) \]
The “encounter current” $U_E(k)$ is the mean current felt by a wave on the depth interval $(-\lambda/2,0)$.

$$U_E(k_n) \cos(\theta_n) = \frac{1}{n} \left(\sum_{i=1}^{n} U(z_i) \cos(\theta_i) \right)$$
\[n \cdot U_E(k_n) \cos(\theta_n) = \sum_{i=1}^{n} \sum_{i=1}^{n} \mathcal{M}(\theta_i, \theta_i) \]

\[n \cdot U_E(k_n) \cos(\theta_n) = U(z_n) \cos(\theta_n) + \sum_{i=1}^{n-1} U(z_i) \cos(\theta_i) \]

\[U(z_n) \cos(\theta_n) = n \cdot U_E(k_n) \cos(\theta_n) \]
The dispersion shell is shifted according to the direction of the current with respect to the wave propagation direction.

Specifically, the direction of maximum shift is the current direction $\theta \approx 320^\circ$.
LABORATORY VALIDATION OF THE METHOD

This method was applied alongside PIV, surface drifter, and dye-tracking techniques for U_{10} ranging from 5 m/s – 23 m/s
A SLEW OF EXAMPLE SPECTRA

\[U_{10} = \]

(a) 8.17 m/s
(b) 11.56 m/s
(c) 15.15 m/s
(d) 18.96 m/s

\[f = \frac{1}{2\pi} \sqrt{\frac{g k + \frac{\sigma}{\rho} k^3}{k}} \]
$U_{10} =$

(a) 8.17 m/s
(b) 11.56 m/s
(c) 15.15 m/s
(d) 18.96 m/s
INTER-METHOD COMPARISON, NEAR-SURFACE CURRENT

\[\text{PIV} - R^2 = 0.88 \]
\[\text{Drifter} - R^2 = 0.84 \]
\[\text{Dye} - R^2 = 0.91 \]
ISOLATION OF WIND/WAVE-INDUCED CURRENT
APPLICATION IN THE FIELD ENVIRONMENT

Step one: account for the ship’s translational motion.

Step two: compute the wavenumber-frequency spectrum.
MOUTH OF THE COLUMBIA RIVER, OR/WA
IN SUMMARY

Wavenumber-frequency spectral analysis of short-scale ocean waves allows one a glimpse of the near-surface current profile without disturbing the air-sea interface.
Furthermore, this method may be performed aboard a moving vessel, offering remote determination of near-surface current under certain conditions.
Use of these techniques reveals a strong, near-surface current that may depart significantly from background flows, apparently orienting into the observed wind stress direction.
Apply this method during drifter/Aerostat operation times to retrieve independent measurement of near-surface current.

FUTURE WORK: THE LASER FIELD CAMPAIGN
FUTURE WORK: THE LASER FIELD CAMPAIGN

Incident polarization

Reflected polarization