The 2nd International Workshop on Air-Sea Gas Fluxes Progress and Future Prospects

> Parameterizations of Whitecap Fraction: Status Update

U.S. NAVAL

ABORATORY

Magdalena D. Anguelova

Remote Sensing Division U.S. Naval Research Laboratory Washington, DC, USA

8 September 2016 Brest, France

Gas exchange and whitecaps

Motivation

Whitecap fraction modeling

New state-of-the-art status

New trends

- New measuring techniques
- New parameterization goals

Gas transfer velocity

- Whitecap fraction W
 - Measure for bubble population
 - Enhanced gas exchange
 - Sea spray production
- COAREG 3.1 formulation
 - $k_b \sim W$
 - Woolf, 1997
 - $W = 3.85 \times 10^{-6} U^{3.41}$
 - Monahan and O'Muichaertaigh (1980) MO'M80
- W affects estimates of k_b , $k_{\rm CO2}$, and $F_{\rm CO2}$
 - Parameterizations $W(U_{10})$
 - W data

Whitecap fraction parameterizations

262 $W(U_{10})$ Monahan and O'Muichaertaigh (2012)

State of the art in 2005

Use of this graph:

- Large spread:
 - Measuring difficulties
 - Natural variability

• Need for improvements in

- Collecting data
- Processing images
- Parameterizations

Issues:

- "Misleading" for the range
 of applicability
 - Brumer et al., OcSci, 2016
- Spread is in "stark contrast" with new expressions
 - Schwendeman and Thomson, JGR, 2015

Range of applicability

Schwendeman & Thomson, 2015

New expressions

Recent data

Schwendeman & Thomson, 2015

- Improvements
 - Collecting data
 - Processing images

Data for that graph

18 data sets

- Table 2
 - Anguelova and Webster (2006)
- Collected 1952-2000
 Published 1963-2004
- Photographic method
 - Usually 1-20 photos for one W data point

First digital data

- Stramska and Petelski (2003)
- Due to memory ⇒ 10-20 photographs per station
- Presumably, 10-20 photos ⇒ one W data point

Averaging images

- Lafon et al. (2004)
- Film (35 mm) camera
- 10-25 photographs ⇒
 one W data point

Averaging images

- Lafon et al. (2004)
- Film (35 mm) camera
- 10-25 photographs \Rightarrow one W data point

• Lafon et al. (2007)

Digital camera and Averaging images

- Sugihara et al. (2007)
 - Digital camera
 - Sampling rate 1 s
 - Averaged 600 images to get one W data

 10-min averages

Callaghan et al., JGR, (2008)

- Allena

New state-of-the art

Retire this graph

New W data caveats

de Leeuw et al., 2011

- Heavy averaging
 - Missing useful information
 - Decaying foam

New W data caveats

- Heavy averaging
 - Missing useful information
 - Decaying foam
- Active whitecap fraction still unconstrained

• Further improvements

- Image processing
- New measuring techniques

New measuring methods

Measured quantity

- Energy dissipation
 - Buoys
 - Hanson and Phillips, 1999
 - Anguelova and Hwang, 2016
 - Models
 - Kraan et al., 1996
 - Scanlon et al., 2016
 - Direct measurements
 - Schwendeman & Thomson, 2015
- Breaking crest length Λ
 - Ken Melville group
 - Gemmrich et al., 2008

Electro-magnetic spectrum

- Radiometry
 - Microwave
 - NRL WindSat data
 - Visible
 - Randolf et al., 2016 (OcSci)
- IR images
 - Sutherland and Melville (2013; 2015)
 - Potter et al. (2015)

Microwave radiometry

- Different platforms
 - Satellite
 - Air plane
 - Ship

Different frequencies

- 6-40 GHz
 - Database
- 40-200 GHz
 - High spatial resolution
- 1-2 GHz
 - High temporal resolution

Whitecap database

- Gridded data
- Two frequencies
 - Sensitivity to foam thickness
- Matched-up met-oc data

•
$$U_{10}$$
, U_{dir} , SST, T_a , H_s , T_p

Parameterizing additional variables

Satellite-based measurements

Salisbury et al., 2013

Salisbury et al., 2014

Annual mean difference

$$\Delta W = \overline{W_{TB}} - \overline{W_U}$$

Difference from MOM80

IR observations

- Lifetime separation
- Independent measuring method

Potter et al., 2015

Conclusions

Improvements

- Digital photography
- Processing algorithms

New state-of-the-art status

- Less noisy data
- Closely clustered parameterizations

New trends

- New measuring techniques
- New parameterizations—include more variables

First W data

Unpublished photographs

- U.S. Weather Squadron Two (1952)
- Aerial observations of sea state
- Standard K-20 aircraft camera
 - altitude of 400 to 600 ft
 - deep waters of the Caribbean area
 - during June-October
- Instantaneous W values
 - One photo ⇒
 one W data point

K-20 Aerial Camera... a light weight, compact, hand-held camera designed especially for rapid-action observation spotting. A highly efficient camera for obtaining a series of aerial photographs in rapid succession from low altitudes. Emipped with lens of $6\frac{3}{8}$ " focal length. gral roll-film magazine with self-coned vacuum back provides up to 50 sures size 4"x 5".

Monahan and Ó'Muircheartaigh, 1980

Systematic collection of W data

- Ed Monahan, late 60s
- Widely used formula (MO'M80):

 $W = 3.85 \times 10^{-6} U_{10}^{3.41}$

- Two data sets combined:
 - BOMEX (Monahan, 1971)
 - East China sea (Toba and Chaen, 1973)
- Parameterization approach
 - Different wind speed exponent

