Gas Exchange in Polar Seas

Ian Ashton, Research Fellow, University of Exeter

iga202@ex.ac.uk

Jamie D. Shutler Brice Loose Bertrand Chapron Jean-Francois Piolle David Woolf Craig Donlon Antoine Grouazel

Ifremer

ΓER

HERIOT WATT UNIVERSITY

THE

UNIVERSITY

OF RHODE ISLAND

esa

oceanflux evolution

Flux Engine in polar seas

- Have a disproportionate contribution to global gas flux
- Are areas of deep water formation

Arctic accounts for 5-15% of total global sink of CO²

Are conventional estimations of gas exchange accurate in areas affected by sea ice?

oceanflux evolution

In-situ measurements in the mixed ice zone (MIZ) have identified **CO₂ fluxes 1–2 orders of magnitude higher than those expected** under similar conditions in the open ocean.

(Else *et al.* 2011),

In contrast to previous studies, we show that **in partially icecovered regions, gas exchange is lower than expected** based on a linear scaling to percent ice cover.

(Rutgers van der Loeff *et al.* 2014)

oceanflux evolution

Standard method

Ice is a barrier to gas exchange

Gas exchange scaled according to percentage cover of ice Exchange in open water is a function of wind speed, the same as in open ocean

oceanflux evolution

Ice is a barrier to gas exchange

Ice floes also a source of turbulence that can increase exchange

Buoyant convection/stratification

Ice changes how wind affects the sea surface

oceanflux evolution

Loose *et al.* (2014) propose a model for estimating the near surface turbulence due to ice, in order to derive an effective gas exchange velocity for MIZ

Initial results estimate a **40% increase in the rate of gas exchange** when compared to scaled open ocean values (For <10ms⁻¹ wind speeds).

Loose, B., McGillis, W.R., Perovich, D., Zappa, C.J., Schlosser, P., 2014. A parameter model of gas exchange for the seasonal sea ice zone. Ocean Science 10, 17-28. 10.5194/os-10-17-2014

oceanflux evolution

Loose et al. 2014 – What affects gas transfer?

- Shear between ice floes and water, uses floe Size distribution and ice velocity
- Buoyant convection/stratification requires the temperature of air and water
- Wind driven turbulence (waves) estimated using mean square slope
- Scaling based on percentage of ice cover

- Adapt FluxEngine to get gas exchange estimates on a 25km resolution polar grid
- 2. Take advantage of new satellite products to:
 - a. Use higher resolution ice coverage data
 - b. Get direct measurements of floe size distribution
 - c. Estimate gas transfer velocity with *mss* derived directly from satellite radar backscatter
- 3. Implement the Loose (2014) model in FluxEngine
- 4. Establish the potential impact of MIZ on global and regional gas transfer estimates (e.g. CO₂ budgets)

Net Co2 flux, Jan 2010

Estimates of

Step 2a – Take advantage of improved resolution ice products

Examine the differences between Cryosat II data and ODYSSEA data that has previously been used

oceanflux evolution

Difference in Ice between ODYSSEA and CRYOSAT, Jan 2012

52

The difference in net CO₂ flux

Step 3 – Implement the Loose et al. 2014 parameter model

oceanflux evolution

Gas transfer velocity, estimated from mss

• keff ice / k 0.00 0.50 1.00 1.50 2.00 UNIVERSITY OF oceanflux evolution esa ER support to science element

Gas transfer velocity due to ice as a fraction of that due to wind

- Adapt FluxEngine to get gas exchange estimates on a 25km resolution polar grid
- 2. Take advantage of new satellite products to:
 - a. Use higher resolution ice coverage data
 - b. Get direct measurements of floe size distribution
 - c. Estimate gas transfer velocity with *mss* derived directly from satellite radar backscatter
- 3. Implement the Loose et al. 2014 parameter model using FluxEngine

 Adapt FluxEngine to get gas exchange estimates on a 25km resolution polar grid

- 2. Take advantage of new satellite products to:
 - a. Use higher resolution ice coverage data
 - b. Get direct measurements of floe size distribution
 - c. Estimate gas transfer velocity with *mss* derived directly from satellite radar backscatter
- 3. Implement the Loose et al. 2014 parameter model using FluxEngine

oceanflux evolution

- Adapt FluxEngine to get gas exchange estimates on a 25km resolution polar grid
- 2. Take advantage of new satellite products to:
 - a. Use higher resolution ice coverage data
 - b. Get direct measurements of floe size distribution
 - c. Estimate gas transfer velocity with *mss* derived directly from satellite radar backscatter
- 3. Implement the Loose et al. 2014 parameter model using FluxEngine

- Adapt FluxEngine to get gas exchange estimates on a 25km resolution polar grid
- 2. Take advantage of new satellite products to:
 - a. Use higher resolution ice coverage data
 - b. Get direct measurements of floe size distribution
 - c. Estimate gas transfer velocity with *mss* derived directly from satellite radar backscatter
- 3. Implement the Loose et al. 2014 parameter model using FluxEngine

- Adapt FluxEngine to get gas exchange estimates on a 25km resolution polar grid
- 2. Take advantage of new satellite products to:
 - a. Use higher resolution ice coverage data
 - b. Get direct measurements of floe size distribution
 - c. Estimate gas transfer velocity with *mss* derived directly from satellite radar backscatter
- 3. Implement the Loose et al. 2014 parameter model using FluxEngine

Thank you for listening and collaborating Any questions?

Dr Ian Ashton, Penryn Campus, University of Exeter iga202@ex.ac.uk

oceanflux evolution

