Modulation of air-sea fluxes by microscale breaking waves.

Peter Sutherland Ken Melville

08/09/2016 Air-sea gas flux 2016

Experimental configuration

FLIP

- Stable
- Minimal air-flow or wave field distortion
- Long booms

3 Experiments:

- Hawaii, Southern California, Northern California

 $\frac{70 \text{ 20-minute records:}}{\text{Wind speed}}$ $U_{10} = 1.6 - 16 \text{ m/s}$

Significant wave height $H_s = 0.7 - 4.7 \text{ m}$

Wave age $c_m/u_* = 16 - 150$

Stereo infrared

- 2x FLIR SC6000 Long wave infra red (LWIR)
- Surface temperature structure is used as a passive tracer over short *∆t*
 - active breakers
 - remnants of past breakers
 - surface signature of turbulence
- FOV ~3 m x 4m; 6 mm resolution

8µm to 9.2µm IR wavelengths 2x10⁻⁵m penetration depth

Stereo infrared surface reconstruction

Reconstructed surface, 2009/09/08 11:07:29.5. U10 = 7.7 m/s, Hs = 2.4 m

Breaking wave detection

Images taken December 6, 2010, 22:02:32.75 [UTC], U10 = 6.5 m/s, Hs = 1.1 m

Region masked due to presence of sub-surface instrumentation

Breaker crest length distribution Λ(c) [Phillips 1985]

 $\Lambda(c)$ = Distribution of breaker crest length per unit area of sea surface per unit increment of breaking crest speed c.

$$L = \int \Lambda(c) dc \, = {\rm Total \ crest \ length \ per} \ {\rm unit \ area \ [m^{-1}]}$$

 $R = \int c\Lambda(c)dc = \text{Fractional overturn per}$ unit time [s⁻¹] Related to heat and gas transfer

Breaker crest length distribution. $\Lambda(c)$

Surface renewal

$$R=\int c\Lambda(c)dc$$
 = Fractional overturn per unit time $[{\rm s}^{\mbox{-1}}]$

First moment of $\Lambda(c)$

Cumulative integral of first moment of $\Lambda(c)$

Stress and dissipation from $\Lambda(c)$

 $\Lambda(c)$ = Distribution of breaker crest length per unit area of sea surface per unit increment of breaking crest speed c.

$$F_m = \frac{\rho_w}{g} \int b c^3 c \Lambda(c) dc =$$
Stress [N/m²]

$$F_E = rac{
ho_w}{g} \int b c^5 \Lambda(c) dc$$
 = Dissipation [W/m²]

Breaking strength parameter

Depends on wave slope Parameterized as a function of spectral saturation (Romero et al. 2012)

Momentum flux

Measuring TKE dissipation near the sea surface is challenging:

- Waves + turbulence have motions at the same spatial and temporal scales

- Instrument wakes

- Intermittent processes

Vorticity $\boldsymbol{\omega} = abla imes \boldsymbol{u}$ for separation of irrot. waves from turbulence

Energy dissipation by wave breaking

Sub-surface TKE dissipation

Comparison with wall-layer

Dissipation by breaking vs. total near-surface TKE dissipation

Turbulence profile comparison with LES

Sullivan, McWilliams, and Melville 2007

Langmuir Circulations

Body force shape functions from Melville, White, and Veron, 2002

Breaker distribution from Melville and Matusov 2002

Breaker crest length distribution. $\Lambda(c)$

Conclusions

- Small scale breaking is dynamically important (surface renewal, stress, and dissipation).
- When small scale breaking is included, wave dissipation can be balanced with dissipation by breaking and measured wind stress can be balanced by momentum flux by breaking over a broad range of conditions.
- Energy is dissipated very near the surface; the majority of energy is dissipated at depths < H_s from the sea surface.
- Developed a new method to measure TKE dissipation at the wavy sea surface.

psutherland.ca/publications.html

- Sutherland, P., and W. K. Melville, 2015. Measuring turbulent kinetic energy dissipation at a wavy sea surface. Journal of Atmospheric and Oceanic Technology, 32, 1498–1514.
- Sutherland, P., and W. K. Melville, **2015**. Field Measurements of Surface and Near-Surface Turbulence in the Presence of Breaking Waves. Journal of Physical Oceanography, 45, 943-965.
- Sutherland, P. & Melville, W. K. 2013. Field measurements and scaling of ocean surface wave-breaking statistics. *Geophysical Research Letters, 40,* 3074-3079

Acknowledgements

- Luc Lenain, Nick Statom
- Captain and crew of R/P FLIP
- Workshop organisers!

