Modulation of air-sea fluxes by microscale breaking waves.

Peter Sutherland
Ken Melville

08/09/2016
Air-sea gas flux 2016
Energy, momentum, and mass transfer between the atmosphere and ocean are all controlled by the surface wave field.
Experimental configuration

FLIP
- Stable
- Minimal air-flow or wave field distortion
- Long booms

3 Experiments:
- Hawaii, Southern California, Northern California

- **70 20-minute records:**
 - Wind speed $U_{10} = 1.6 – 16 \text{ m/s}$
 - Significant wave height $H_s = 0.7 – 4.7 \text{ m}$
 - Wave age $c_m/u_* = 16 – 150$

Stereo LWIR cameras
- FLIR SC6000
- 640x512 pixels
- 40 Hz

Eddy Flux system
- $u', v', w', T \rightarrow \tau, u_*, U_{10}$

Fixed depth array:
- ADV, Aquadopp, fast CT sensor, hydrophone

IR Camera field of view

Foam floats

Surface following Aquadopp float

Profiling array:
- ADV, Aquadopp, fast CT sensor

Automatic profiling
Stereo infrared

- 2x FLIR SC6000 Long wave infra red (LWIR)

- Surface temperature structure is used as a passive tracer over short Δt
 - active breakers
 - remnants of past breakers
 - surface signature of turbulence

- FOV $\sim 3 \text{ m } \times 4 \text{ m}$; 6 mm resolution

8μm to 9.2μm IR wavelengths
2x10^{-5}m penetration depth
Stereo infrared surface reconstruction

Reconstructed surface, 2009/09/08 11:07:29.5. U10 = 7.7 m/s, Hs = 2.4 m
Images taken December 6, 2010, 22:02:32.75 [UTC], U10 = 6.5 m/s, Hs = 1.1 m
\(\Lambda(c) = \text{Distribution of breaker crest length per unit area of sea surface per unit increment of breaking crest speed } c. \)

\[
L = \int \Lambda(c) dc = \text{Total crest length per unit area [m}^{-1}\text{]}
\]

\[
R = \int c\Lambda(c) dc = \text{Fractional overturn per unit time [s}^{-1}\text{]}
\]

Related to heat and gas transfer.
Breaker crest length distribution. $\Lambda(c)$
Surface renewal

\[R = \int c \Lambda(c) \, dc \quad \text{Fractional overturn per unit time} \ [s^{-1}] \]
$\Lambda(c) = \text{Distribution of breaker crest length per unit area of sea surface per unit increment of breaking crest speed } c.$

$$F_m = \frac{\rho_w}{g} \int b c^3 c \Lambda(c) dc = \text{Stress} \ [N/m^2]$$

$$F_E = \frac{\rho_w}{g} \int b c^5 \Lambda(c) dc = \text{Dissipation} \ [W/m^2]$$

Breaking strength parameter
Depends on wave slope
Parameterized as a function of spectral saturation (Romero et al. 2012)
Momentum flux by breaking

$\rho_w g^{-1} \int \frac{v}{h} \left(c_i \right) \, de \quad [N/m^2]$

$\rho_a u_i^2 \quad [N/m^2]$

c_i / ρ_a

Measured wind stress
Measuring TKE dissipation near the sea surface is challenging:
- Waves + turbulence have motions at the same spatial and temporal scales
- Instrument wakes
- Intermittent processes
...
Vorticity $\omega = \nabla \times u$ for separation of irrot. waves from turbulence

Helmholtz decomposition:

$$u = -\nabla \phi + \nabla \times A$$

- u_I: Irrotational velocity
- u_R: Rotational velocity

Vorticity field contains no irrotational wave component
Energy dissipation by wave breaking

$U_{10} = 6.5 \text{ m/s}$
$H_s = 1.1 \text{ m}$
$T_p = 4.9 \text{ s}$

TKE Dissipation
Thermal structure PIV

Surface elevation
Stereo imagery
Sub-surface TKE dissipation

\[z = 0 \]

Near-surface float

\[u(x,t) - v(y,t) - w(z,t) \]

Lowered profiler

- Fast CT probe
- \(w(z,t) \)
- \(u(x,t) \)
- ADV head, 10 or 16 MHz
- Data Cable
- ADV body
- XSens IMU
- Instrument housing

Aquadopp Profiler HR

- 2MHz, pulse coherent

Fixed Depth

Profiling

- \(\varepsilon \) [m²/s³]
- \(z \) [m]

Graph

- Vertical
 - LTMI 1
 - LTMI 2
 - LTMI 3

Legend

- \(\varepsilon \) [m²/s³]
Comparison with wall-layer

\[(c_m/u_*)^{3.15} \]
Dissipation by breaking vs. total near-surface TKE dissipation

- Agreement in young waves

- Disagreement in light winds / old waves

Sub-surface measurements connected to surface measurements using a z^{-1} profile
Turbulence profile comparison with LES

Sullivan, McWilliams, and Melville 2007

Breakers applied as body forces

Body force shape functions from Melville, White, and Veron, 2002

Breaker distribution from Melville and Matusov 2002

Langmuir Circulations

\[l_b = \frac{c_p^2}{g} \]

\[c_p/u_* = 19 \]

\[23 \]

\[30 \]
Breaker crest length distribution. $\Lambda(c)$
Conclusions

- Small scale breaking is dynamically important (surface renewal, stress, and dissipation).
- When small scale breaking is included, wave dissipation can be balanced with dissipation by breaking and measured wind stress can be balanced by momentum flux by breaking over a broad range of conditions.
- Energy is dissipated very near the surface; the majority of energy is dissipated at depths $< H_s$ from the sea surface.

- Developed a new method to measure TKE dissipation at the wavy sea surface.

[link: psutherland.ca/publications.html]

Acknowledgements
- Luc Lenain, Nick Statom
- Captain and crew of R/P FLIP
- Workshop organisers!