What can we learn from Ku and C band surface backscatter

- Jean Tournadre, B. Chapron (LOPS)
- Doug Vandemark (URI)

Altimeter

Most radar altimeters operate a two frequencies

- Ku band (13.5 GHz)
- And

fremer

- C band (5.3 GHz) Jason, Topex
 - Or S band (3.2 GHz) Envisat

The two frequencies are sensitive to surface capillarygravity wave of different wavelengths

Ku : 2.2 cm C : 6 cm S :9 cm

Very long archives (1992-present)

Ku/C or Ku/S relationship

- The dual frequency measurements are perfectly collocated in time and space
- Estimation of a mean relationship and its rms

freme

- Use to detect rain affected samples Ku : Rain attenuation is frequency dependant, Detection of samples where Ku is attenuated versus C or S band and presence of liquid water
- Question : what can we learn from the samples that do not follow the mean relationship (outside 2 rms) ?

Mean relationship

2D histogram of s0 Ku and C (~2.10⁸ samples)

Ku Attenuation : rain if presence of liquid water Ku enhancement ? Ku attenuation if no liquid water

Enhancement

remer.

$\sigma_0 ku - f(\sigma_0 C) > 2 rms(\sigma_0 c)$

More backscatter from Ku band (2 cm waves) than C band (6 cm waves), i.e. more roughness in 6 cm range than that at 2 cm range. T avoid any problems related to atmospheric attenuation by liquid water only case with low liquid water (<0.1 kg·m²) are considered Distributions of σ_0 Ku and σ_0 0 C for this kind of measurements are strongly bimodal with a cutoff at 14 dB (Ku).

Two regimes one corresponding to low wind speed and the other to medium to high winds

Geographical distribution of %age of samples

JASON2 σ₀ <13.5 (dB)

High winds

Clear association with

- strong currents, almost reproduces the
- ⁻² distribution of Ocean
- Eddy Kinetic Energy
 distribution

JASON2 σ₀ >13.5 (dB)

ffreme

Low winds Tropical and equatorial regions (surface films?) Low winds and strong current

Geographical distribution ECMWF wind speed

JASON2 σ_0 <13.5 (dB) WIND speed

High winds Quite homogeneous repartition of wind Stronger winds in the tropics

JASON2 σ_0 >13.5 (dB) WIND speed

ffreme

Low winds Tropical and equatorial regions higher winds (~3-10 4 m/s than that at higher lat

5

Geographical distribution off nadir angle

Off nadir angle estimated from waveforms analysis is a good indicator of the waveforms distortion. Waveform distortion is related to the inhomogenity of the surface backscatter within the altimeter footprint

High winds Very low off-nadir angle No waveform distortion Homogeneous backscatter

freme

Low winds High distortion. Under light winds the surface backscatter is strongly inhomogeneous.

KU/S band from Envisat altimeter

Same analysis f Envisat Ku/S band backscatter . Similar to Ku/C prove the robustness of the results two independent measurements from two different instruments

Envisat σ_0 <12.5 (dB)

Envisat $\sigma_0 > 12.5 (dB)$

fremer

ffreme

Seasonal variability

Reflects the shift of seasonal wind patterns

Always related to the distribution of surface current

ffreme

Seasonal variability low winds

Appears to be at least partly related to the distribution of ocean Chlorophyll See in particular the patterns in Malvinas bassin.

Attenuation

JASON2 $\sigma_0 < 14$ dB

JASON2 σ_0 >14dB

 $\sigma_0 ku - f(\sigma_0 C) < -2 rms(\sigma_0 c)$

More backscatter from C band (6 cm waves) than Ku band (2 cm waves), i.e. more roughness in 2 cm range than that at 6 cm range.

 More difficult because rain attenuation has the same effect on the signal.

We consider only the samples for which the liquid water content is below 0.5 kg/m²

- ¹ Distributions of σ_0 Ku and σ_0 O C
- for this kind of measurements
- are strongly bimodal with a cutoff at 14 dB (Ku).

Two regimes one corresponding to low wind speed and the other to medium to high winds

Attenuation

Ifremer

High winds seasonal variations

JASON2 $\sigma_0^{}$ <14dB JFM

JASON2 $\sigma_0^{}$ <14dB NOD

Attenuation

Ifremer

low winds seasonal variations

JASON2 σ_0 >14dB NOD

Summary

Ku/C band σ_0	Surface wave	Wind speed	Geographical dsistribution	Physics
σ₀ ku >σ₀C	2cm attenuated vs 6 cm	High (>7m/s)	Regions of strong currents	Current- wave interactions
		Low (<5m/s)	Tropical Equatorial regions	Surface films ?
σ₀ ku <σ₀C	2cm enhanced vs 6 cm	High (>7m/s)	Southern ocean south of 50°S	Fetch ?
		Low (<5m/s)	Indo-Pacific equatorial region	Rain freshening ?

