Investigating the mechanisms of air-sea gas exchange at hurricane wind speeds in windwave tunnel experiments

Kerstin Krall

Naohisa Takagaki, Wolfgang Mischler, Angelika Klein, Leonie Flothow, Satoru Komori, Bernd Jähne

Kyoto University, Japan

Institute of Environmental Physics

Existing measurements

at hurricane wind speeds in the field

C. McNeil and E. D'Asaro: *Parameterization of air sea gas fluxes at extreme wind speeds.* Journal of Marine Systems, 66:110–121, June 2007.

Existing measurements

at hurricane wind speeds in the field

C. McNeil and E. D'Asaro: *Parameterization of air sea gas fluxes at extreme wind speeds.* Journal of Marine Systems, 66:110–121, June 2007.

measurements in hurricane Frances 2004 using unmanned buoys

wind speeds

 parameterization developed in McNeil&D'Asaro2007

$$k_{\rm McN} = 14 + a * u_{10}^b$$

a=0.0002925 (-0.001215, 0.0018) b=3.742 (2.415, 5.069)

The high speed wind-wave tank

length: approx. 15.7 m flume width: 80 cm water depth: 80 cm air 'height': 80 cm water volume: 10.0 m³ air volume: 10.0 m³ surface area: 10.3 m² u_{10} : 7.0-67 m/s (@6.5m fetch)

Environmental Fluids and Thermal Engineering Lab

The high speed wind-wave tank Wind increasing to 67 m/s

Kerstin Krall

Salt water model

trace amount of Butanol modifies bubble size distribution by hindering coalescence here: 0.5 liters Butanol in 13,700 liters of water this is not enough to significantly change the surface tension

Salt water model

trace amount of Butanol modifies bubble size distribution by hindering coalescence here: 0.5 liters Butanol in 13,700 liters of water this is not enough to significantly change the surface tension

Salt water model

trace amount of Butanol modifies bubble size distribution by hindering coalescence here: 0.5 liters Butanol in 13,700 liters of water this is not enough to significantly change the surface tension

fresh water with Butano 1mm mm

Salt water model Wind at 67 m/s

Tracers

Tracer	D [10 ⁻⁵ cm ² s ⁻¹]	X
SF ₆	1.06	0.006
Helium	6.73	0.0095
Neon	3.65	0.011
Xenon	1.27	0.107
C_2HF_5	0.97	0.184
Hexafluorobenzene (HFB)	0.74	1.0
CH_2F_2	1.43	2.1
I,4-Difluorobenzene (DFB)	0.81	3.2
DMS	1.19	12.7
Methyl Acetate (MA)	0.95	110

Tracers

Tracer	D [10 ⁻⁵ cm ² s ⁻¹]	X []
SF ₆	1.06	0.006
Helium	6.73	0.0095
Neon	3.65	0.011
Xenon	1.27	0.107
C ₂ HF ₅	0.97	0.184
Hexafluorobenzene (HFB)	0.74	1.0
CH_2F_2	1.43	2.1
I,4-Difluorobenzene (DFB)	0.81	3.2
DMS	1.19	12.7
Methyl Acetate (MA)	0.95	110

Tracers

with fresh water

⁸

Schmidt number scaling

for partially air side controlled tracers: $\frac{1}{K} = \frac{1}{k_w} + \frac{1}{\alpha k_a}$

-> Schmidt number scaling is not applicable for partially air side controlled tracers

Schmidt number scaling is not applicable when there are bubbles

turn this argument around: differences found between gases after Schmidt number scaling to k_{600} can be attributed to either (partial) air side control or solubility dependent bubble effects!

Gas Exchange at Hurricane Wind Speed

in fresh water scaled to k_{600}

in fresh water scaled to k_{600}

in fresh water scaled to k_{600}

in fresh water scaled to k_{600} and friction velocity

Lab data sets:

in fresh water scaled to k_{600} and friction velocity

Lab data sets:

in fresh water scaled to k_{600} and friction velocity

Lab data sets:

in fresh water scaled to k_{600} and friction velocity

Lab data sets:

in salt water model scaled to k_{660}

in salt water model scaled to k_{660} compared to field data

McN2007: McNeil, C. & D'Asaro, E. Parameterization of air sea gas fluxes at extreme wind speeds J. Marine Syst., 2007, 66, 110-121

Bubble enhancement at u₁₀=64ms⁻¹

fresh water compared with salt water model at 20°C

What about DMS?

limited exchange velocities observed in the field

Vlahos, P.; Monahan, E.; B.J.Huebert & Edson, J. Wind-dependence of DMS transfer velocity: comparison of model with recent southern ocean observations in: Gas Transfer at Water Surfaces 2010, 2011, 313-321 Bell, T. G.; De Bruyn, W.; Marandino, C. A.; Miller, S. D.; Law, C. S.; Smith, M. J. & Saltzman, E. S. Dimethylsulfide gas transfer coefficients from algal blooms in the Southern Ocean ACP, 2015, 15, 1783-1794

What about DMS?

limited interfacial exchange observed in the field but not in the lab

no limit or plateau observed in our study!

Bell et al. 2013: Bell, T. G., De Bruyn, W., Miller, S. D., Ward, B., Christensen, K. H., and Saltzman, E. S.: Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed ACP 13, 11073–11087.

Conclusions

comparability between lab and field data confirms that the essential mechanisms are replicated in the lab

at high wind speeds above 35m/s:

- new regime with much steeper increase of the gas transfer velocity found in agreement with previous studies

in fresh water:

- bubble effects for all gases very small, likely negligible for CO₂

in salt water model:

- up to 95% increase in the gas transfer velocity found for the lowest solubilities

- no increase found for solubilities above approx. 1, so bubble effects for CO_2 likely very small, even in salt water!

no limited transport velocity for DMS observed

next step: confirm this with real salt water

Gas Exchange at Hurricane Wind Speed

Surface Tension of Butanol

measured with a bubble tensiometer at 22.5°C

Gas Exchange at Hurricane Wind Speed

Water side mass balance

for an evasion experiment

Mass balance equation:

$$\Delta m = m_{in} - m_{out}$$

water side mass balance:

$$V_w \dot{c}_w = -kA(c_w - \alpha c_a) - \dot{V}_w c_w$$

assuming
$$c_a \approx 0$$
 yields
exponentially decreasing
water side concentration

$$c_w(t) = c_w(0)e^{\left(-\left(\frac{A}{V_w}k + \frac{\dot{V}_w}{V_w}\right)*t\right)}$$

Water side mass balance

for an evasion experiment

Mass balance equation:

$$\Delta m = m_{in} - m_{out}$$

water side mass balance:

assuming $c_a \approx 0$ yields exponentially decreasing water side concentration

$$V_w \dot{c}_w = -kA(c_w - \alpha c_a) - \dot{V}_w c_w$$

$$c_w(t) = c_w(0)e^{\left(-\left(\frac{A}{V_w}k + \frac{\dot{V}_w}{V_w}\right) * t\right)}$$

Gas Exchange at Hurricane Wind Speed

Kerstin Krall

Fetch Dependency

Water Surface at the Wind Inlet at 67m/s with fresh water

10cm

Gas Exchange at Hurricane Wind Speed