

Sea spray production by bag-breakup mode of fragmentation of the air-water interface at strong and hurricane wind

> Yulia Troitskaya IAP RAS Nizhny Novgorod

Enhancing the sea-air fluxes at high wind speeds due to sea spray, (Riehl H. 1954. *Tropical Meteorology*)

Only comparatively big droplets contribute to fluxes from the ocean to atmosphere

momentum flux

•moist enthalpy flux according to the concept of re-entrant spray (Andreas, Emanuel, 2001)

Sea spray that completely evaporate can not affect moist enthalpy transfer, because during the phase transfer they absorb as much sensible heat as they give off in latent heat (Emanuel, 1995)

The reasons of this uncertainty are

- 1. Difficulties for direct measurements an strong winds
- 2. Insufficient knowledge of spray generating mechanism.

The purposes of this study are

- To investigate of mechanisms responsible for spray generation at strong wind, classify them and quantify the efficiency of the disclosed mechanisms
- To construct the spray generation function at strong winds basing on disclosed mechanisms of their generation
- To estimate momentum and moist enthalpy fluxes at hurricane winds taking into account the effect of spray

The overall view of wind-wave flume

Wind – wave at U_{10} =29 m/s

•Dimensions of the channel •10m x 0.4m x 0.4 m •centerline airflow 3 - 25 m/s •equivalent 10-m neutral wind speed U₁₀ 4 - 40 m/s,

Surface wave frequency spectra

MEMRECAM HX-3

High Speed Camera System

Memrecam HX3 Hi	gh Resolution M	ode
Max Res (pixels)	2560 X 1920	
Optical Format	35.20 mm	
fps @ Max Res	2,0	000
	Mono	Color
ISO Rating	10,000	2,500

Memrecam HX3 Hi	gh Speed Mode	
Max Res (pixels)	1280 X 960	
Optical Format	35.20 mm	
fps @ Max Res	7,690	
	Mono	Color
ISO Rating	40,000	10,000

Memory Option	16GB, 32GB, 64GB	
Maximum fps	1,300,000	

Imaging Formats	Max fps @ Format
High Def: 16 X 9	
1920 X 1080	4,670
1280 X 720	10,230
Other Formats	
4 Mega Pixel	2,400
2 Mega Pixel	4,740
1 Mega Pixel	9,220
XGA (1024 X 768)	11,780
768 X 576	20,230
VGA (640 X 480)	28,310
512 X 512	32,410
512 X 384	43,000
320 X 320	74,340
320 X 240	105,800
320 X 192	130,700
320 X 96	246,880
320 X 48	444,400
320 X 24	740,660

Experimental setup for the shadow method

Spray generation at the wave crests (projections) Koga, Tellus, 1981

Wind speed U₁₀=25.9 m/s f = 85 mm Samyang 85 mm f/1.4 Distance = 207 cm Scale = 256 µm/px 4500 fps

Spray generation at the wave crests (underwater bubble) ← 135 мм ← →

<u>Top view</u> Wind speed U_{10} =25.9 m/s f = 85 mm Samyang 85 mm f/1.4 Distance = 65 cm Scale = 73 µm/px 10000 fps

Side viewWind speed U_{10} =27.8 m/s•f = 55 mmSamyang 85 mm f/1.4•Distance = 65 cm•Scale = 73 µm/px•2000 fps

H. Lhuissier, E. Villermaux, *J. Fluid Mech.* 696, 5–44 (2012).

Spray generation at the wave crests ("bag breakup") (side view) (top view)

Width 74 mm Wind speed Wind speed Width 70 mm U₁₀=27.7 m/s U₁₀=26.7 m/s f = 85 mm (Samyang 85 mm f/1.4) f = 85 mm (Samyang 85 mm f/1.4) Distance = 207 cm Distance = 65 cm **Scale = 256 µm/px** Scale = $73 \mu m/px$ 4500 fps 10000 fps _ow pressure Thin rim pressure rim rim Low pressure

H. Branger, private communication

F. Veron, etal, 2012

"Bag breakup" (moderate $We = \frac{\rho_a U^2 R}{\sigma}$)

Bag-breakup mode of fragmentation of a droplet

V. Kulkarni and P. Sojka Phys. Fluids 26, 072103 (2014)

4 *mm*

Bag-breakup of liquid jets in crossflow

Ashgriz, N. Atomization of a liquid jet in a crossflow. In Proceedings of the 4th International Meeting of Advances in Thermofluids, Melaka, Malaysia, 3–4 October 2011.

<u>10 mm</u>

Bag breakup (side view) Wind speed U_{10} =27.8 m/s •f = 55 mm Samyang 85 mm f/1.4 •Distance = 65 cm •Scale = 73 µm/px •2000 fps

Spray generation mechanisms

Semi-automatic processing of images

Statistics: about 70 video containing about 33000 frames each

The bag-breakup activation threshold u_{*} approximately corresponds to gale force wind, or Force 8 wind in Beaufort scale.

The Beaufort scale based on the sea's appearance. Wind force 8: "Moderately high waves with breaking crests forming <u>spindrift.</u>

spindrift — \blacktriangleright spray blown from the crests of waves by the wind

"Spindrift", 25 fps

Wave crest, 2000 fps

Bag-breakup, 10000 fps

Phenomenological "statistical-physics" approach to describe the statistics of "bags"

Consider the wave crests that can be potentially transformed to bags (or broken to "spindrift") as a "subsystem" in equilibrium with the "thermostat" – air-sea boundary layer. The statistical distribution of energy states of this subsystem is determined by the Gibbs or canonical distribution

 $dW = \alpha e^{-\frac{E}{\beta}} dE$ α μ β - functions of wave fetch and wind speed

Similarly to thermodynamics $\beta \sim u_*^2$

(The Boussinesq analogy between the turbulent velocity fluctuations and the thermal motions of molecules in gas.)

The bags' regime requires the finite minimum energy of the subsystem for activation. Then, their total number of "bags" is proportional to the probability that the subsystem energy exceeds this minimum value, denoted U_0^2

$$N_{bags}(u_{\star}) = \int_{U_0^2}^{\infty} Ae^{-\frac{E}{u_{\star}^2}} dE = Au_{\star}^2 \exp\left(-\frac{U_0^2}{u_{\star}^2}\right)$$

Number of "bags" unit time per unit area versus friction velocity

SSGF is a convolution of the size spectra of bags with the size spectra of droplets produced by a sole bag

$$\frac{dF(r)}{dr} = \frac{N_{bags}(u_{*})}{\langle R \rangle(u_{*})} \int P_{8}\left(\frac{R}{\langle R \rangle(u_{*})}\right) F_{drops}(r,R) dR$$

"Bags" generate spray in two ways

1. Rupturing the film of inflated bag

"Film droplets" r~100 μm 2. Fragmentation of the rim

"Rim droplets" A "hallmark" of bag-breakup r~1000 μm

 $F_{drops}(r,R) = F_{film}(r,R) + F_{rim}(r,R)$

"Bag breakup" SSGF at wind friction velocities u^* from 1 m/s to 2 m/s with increment 0.1 m/s

Comparing of the model with available field experiments

Effect of the "bag-breakup" on air-sea fluxes.

Effect on air-sea momentum flux (tangential stress).

U ₁₀, m s⁻¹

Effect of spray on transfer coefficients

Sea surface drag via wind speed (hurricane)

For neutral stratification of atmospheric boundary layer

Effect of spray on transfer coefficients

Sea surface drag via wind speed (hurricane)

Taking into account the effect of suspended droplets on the static stability of atmospheric boundary layer

Effect of the "bag-breakup" on air-sea fluxes.

Effect on air-sea moist enthalpy flux.

The spay enthalpy flux is a sensible heat flux driven by the temperature difference between the sea surface and the re-entered spray (Andreas, Emanuel, 2001)

$$F_{QSpray} = \rho_w \int_0^\infty \frac{dF(r, u_*)}{dr} \frac{4\pi r^3}{3} Q_S dr$$

Sea spray microphysics by Andreas et al, 1989-2005 Sensible heat flux from one droplet

$$\mathbf{Q}_{s}(\mathbf{r}_{0}) = \boldsymbol{\rho}_{w} \mathbf{C}_{pw} \left(\mathbf{T}_{w} - \mathbf{T}_{eq} \right) \left(1 - \exp(-\tau_{f}/\tau_{T}) \right)$$

Estimate of contribution of spray to gas exchange at strong wind

$$F_{spray} = F \int 4\pi r^2 \frac{dF(r, u_*)}{dr} \tau_f(r, u_*, \Omega) dr$$

 \boldsymbol{F} is the direct gas flux from the unit area of unbroken surface, τ_{f} is the time of the spray residence in MABL (Andreas, 2005).

The shear of gas fluxes from the

Contribution of spray

Conclusions

•Statistical analyses of sequences of frames of high-speed video has enabled us to prove that the dominant spray-generation mechanism in extreme winds relates to the bag-breakup fluid fragmentation regime. It activates at conditions corresponding to Force 8 wind, manifested as "spindrift".

•Starting from general principles of statistical physics, we develop statistics of the bag-breakup events and determine the spray generation function, which is in good agreement with available experimental data

•Giant droplets generated by bag-breakup significantly contribute to enthalpy and momentum flux:

•1) They significantly increase the air-sea enthalpy flux at hurricane wind

•2) They enables to explain non-monotonous dependence of surface drag coefficient on wind speed peaking at 35-40 m/s.
•Spray can be the main contributor to gas exchange at storms

Alexander Kandaurov, IAP

Contributors

Olga Ermakova, IAP

Dmitry Kozlov, IAP

Daniil Sergeev, IAP

Sergej Zilitinkevich, Uni Helsinki