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Using satellite altimetry
to measure
air-sea gas transfer velocity

1) Air-sea gas transfer and satellite altimetry

2) Apply our calibration for DMS to any other gas



fuel CO2 controls on
uptake gas exchange

e

solubility blolo |ca|

‘ YCJ ‘ cyc e
mixed layer J &
dynamics upwelling

OCEAN CARBON UPTAKE

WHAT ARE THE PATTERNS OF AIR-SEA CO3 EXCHANGE!?




Gas Flux

Higher gas concentration in the ocean :
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Gas Flux

Higher gas concentration in the atmosphere




Gas Flux = AC X K

/\’H N

AC = C(air) — C(ocean)

K = gas transfer velocity (cm/hr)
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Gas Flux = AC XK

Bigger wave slope gives bigger gas transfer velocity, K
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Traditional wind speed parameterizations of K

Wind speed, U,,(m/s)

v

Short wind waves

v

Gas transfer velocity, K (cm/hr)
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Traditional wind speed parameterizations of K

Short wind waves, mean square slope (mss)

v

Gas transfer velocity, K (cm/hr)
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measured over the open ocean using satellite altimeters
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Gas transfer velocity is inversely related to backscatter coefficient, o
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Ku-band observations from altimeters on board 7 satellites:
ERS-1 GEOSAT

ERS-2

TOPEX-Poseidon

GEOSAT Follow-On
JASON-1

JASON-2

JASON-2

ENVISAT

ftp:// erl



Data Sources
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Data Sources
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Matches: < 6 h, < 0.5° T
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measured Iin the open ocean
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measured Iin the open ocean
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Ku- and C- band observations from altimeters on board Jason-1 and Jason-2:

Recently C-band data have also become available for Jason 1 and Jason 2

We found 62 matches with DMS sample stations for dt <6 hr and dx < 0.5°

JASON-2

o,-band: 13.6 GHz; 2.1 cm;100 rad/m

o.-band: 5.3 GHz; 5.5 cm; 40 rad/m

ftp:// eri



Best wind speed K, 650 =C+ AU (1)

A
Best single band K, 0 =C+— (2)
O-Ku
1 B
Best dual band K, 60 =CH+ AEU - E (3)
Ku UC
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Parameterizations
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frequency, altimeter backscatter.” Rem. Sens. Env. 139 1-5, doi: 10.1016/j.rse.2013.07.026



Measured K, is total gas transfer velocity

K, IS composite of air-side and water-side gas transfer velocities, k, and k,,

K, |1 1 1 1
w k — +
; K, k, HI&
kW
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Application to other gases

k, is water side gas transfer velocity

k, is the sum of direct and bubble mediated gas transfer, k, and k,

k, =k, +k,

Hybrid model (Woolf, 1997)
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Total gas transfer velocity, K,, for DMS

1 — 1 1 Calculated for DMS
K, k, \H[k, / (Johnson, 2010)

— _|X DMS is sufficiently soluble
w ~ ™d
(Woolf, 1997)

Calibration for K, for DMS can give us calibration for ks



K4 ows Can be converted to k, of any other gas with Schmidt number Sc

—1/2

| Sc
kd — E kd,DMS

PChus

k, =k, +k,

w

Calibration for k, can give us calibration for k,
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K4 ows Was normalized to gas with Schmidt number 660

1/2

., s

660

kd,660

LI,

k, =k, +850 (W (Woolf, 1997)

W is fraction whitecap coverage

W can be derived from models and remote sensing
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For carbon dioxide, CO,

1/2

o =pSe

660

1 1
K, B k. +% CO, is sufficiently insoluble

K,~ k, air-sea gas transfer of CO, is limited by water side

K, 660 +850 (W

LI,
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17 — 28 June, 2006 Marine Aerosol Production (MAP) survey in the North East Atlantic

produced 107 fraction whitecap coverage, W, and U,, measurements

Callaghan, A., G. de Leeuw, L. Cohen, and C. D. O’'Dowd, 2008: Relationship of oceanic whitecap coverage to wind speed and wind history. er'
GRL, VOL. 35



Using the parameterization with in situ data for CO,,

—1/2
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(2.6W,,,; —5.7) (Goddijn-Murphy et.al., 2012)

k =k, +850 W (Woolf, 1997)
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Water side gas transfer velocity, k,, for CO, normalized to Sc = 660
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Water side gas transfer velocity, k,, for CO, normalized to Sc = 660
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DMS is produced in ocean surfaces around the globe

Air-sea concentration difference of DMS is large relative to
atmospheric background concentration

Air-sea gradient of DMS is always from the ocean to the atmosphere
All DMS gas transfer is presumably through the unbroken surface

DMS important gas in climate studies (related to cloud formation)
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To minimize separation errors, data points with short dt were analysed.

Because these data sets were small the bootstrap method was applied. The
bootstrap method creates synthetic sets of data by random resampling from the original

data with replacement.

We created 1000 synthetic data sets using
(a) 16 Data points for which dt <1 hr

(b) 29 Data points for which dt < 2 hr

The RMSE values of the fits for each synthetic data set were calculated for Eqgs. 1-3
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Using a 1000 bootstrapped data sets
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frequency, altimeter backscatter.” Rem. Sens. Env. 139 1-5, doi: 10.1016/j.rse.2013.07.026



Direct gas transfer velocity, k¢, (cm hr?), valid for any gas

Altimeter o, Ky 60 = 2.1%x10° %é +0.1 (R?=0.51;, RMSE =5.5)
Ku

Altimeter U, Ky g0 =2.2, 5 —3.2 (R2 = 0.52; RMSE = 5.5)

In situ U, K, o0 = 2.6, —5.7 (R2 = 0.71; RMSE = 4.2)
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