

An ensemble approach to gas flux climatology

David Woolf d.k.woolf@hw.ac.uk

International Centre for Island Technology Heriot-Watt University

Overview

- Introduction
- Classifying Uncertainty
- Measurement Uncertainty
- Uncertainty in Systems
- An Ensemble "brute force" Approach
- Errors in Differences
- Examples from OceanFlux
- Whose Ensemble?

How do we arrive at realistic estimates of uncertainty?

Classifying Uncertainty I

Random Error and Systematic Bias

Level

Statistical Scenario Qualitative Recognised Ignorance Location

Where in modelling/processing system

Nature

Epistemic Natural Variability Ambiguity

Location. Where?

What and where?

e.g. parametrization of k

Parameter e.g. " a_2 " in "k = $a_2 U^2$ "

Structural e.g. " $a_2 U^2$ " vs " $a_0 + a_3 U^3$ "

Separate and distinct

Propagation characteristics differ

Classifying Uncertainty II

An example of a "simple" error budget: Sea surface height, P-Y Le Traon, 2007

Sea Surface Height (SSH) (relative to an earth ellipsoid)= Orbit height – Range

SSH = Orbit – Range – Σ Corr

Precision of the SSH :

- Orbit error
- •Errors on the range
 - •Instrumental noise
 - •Various instrument errors
 - •Various geophysical errors (e.g., atmospheric attenuation, tides, inverse barometer effects, ...)

An example of a "simple" error budget: Sea surface height, P-Y Le Traon, 2007

a, *likely to be minor errors at global level, but much more important locally* Identification of sources of error within the flux calculation and tentative estimates of the uncertainty that they contribute to the gross and net fluxes.

Identifier	Location			Nature	Randomness	Uncertainty in Gross Flux	
k kerfuffle	Model structure	Scenario		Ambiguity	Bias	50%	>100%
	Parameter	Statistical consciences of the scenario	or	Epistemic	Bias	20%	50%
Wind speed (products)	Input	Statistical consciences of the scenario	or	Epistemic	Bias	10%	10%
Wind speed (sampling)	Input	Statistical		Natural Variability	Random	<5%, a	<5%
Cool skin and warm layers	Model structure	Statistical c scenario	or	Epistemic	Bias	<5%, a	25%
Temperature (products)	Input	Statistical consciences of the scenario	or	Epistemic	Bias	<5%, a	<5%
Temperature (sampling)	Input	Statistical		Natural Variability	Random	<5%, a	<5%
Temperature – wind speed covariance (sampling)	Input	Statistical		Natural Variability	Random	<5%, a	<5%
Temperature – wind speed covariance	Model Structure	Statistical c scenario	or	Natural Variability	Random	<5%, a	<5%
pCO2 (bias)	Input	Statistical consciences of the scenario	or	Epistemic	Bias	<5%, a	25%
pCO2 (random)	Input	Statistical		Epistemic	Random	<5%, a	<5%
	Model Structure	Statistical c scenario	or	Epistemic	Bias	<5%	25%

Uncertainty in a Modelling System

Ensemble Calculations

- + bias
- + random error
- Bootstrapping (by cruise)
- Parallel data
- Parallel Theories (ambiguity)

Ensemble Calculations II

- Core (project controlled)
- User
 - Moderated
 - Uncensored
- Expert Group
 - Censored

Errors in Differences

- Globally for CO₂, net flux is ~2% of gross exchange
- Propagation varies:
 - Acting on gross and net equally (e.g. k parameter)
 - Acting on upward or downward separately
 - e.g. thermal and haline effects
 - 1% in gross corresponds to 50% in net
 - Complicated (e.g. k structural)

Examples from OceanFlux net global CO₂

- Largest (>1 PgC/y)
- Large (>0.5 PgC/y)
- Substantial (0.1-0.5PgC/y

- k ambiguity
- •SOCAT vs Takahashi
- Tskin, Tsubskin
- Secular trend
- k structural and parameter
- Data censoring (e.g. equilibrator temp)
- fugacity bias
- bootstrap

How would you define uncertainty on climatologies?

How can we agree what is and what is not credible?

