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Mass flux estimation requires the driver – 
ΔpCO2(x,y,t)

• Standard approach = ΔpCO2 climatology from 
Takahashi/SOCAT pCO2 along with atm. model (e.g. 
CTracker)

• Pros:  increasing database around globe to give 
mean global and seasonal estimates (> 7 M data 
points)

• Cons: 
–  time coverage, very few locations yet sampled 

for even one annual cycle at monthly time step
– spatial coverage, many basins (e.g. SO, Indian 

Ocean, and S. Pacific & Atlantic are very sparsely 
sampled)
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US East Coast
example from 

Signorini et al 2013

More than 800,000 
indiv. samples, 

1987-2011

Few pixels with 
monthly coverage



Objective – global space/time ΔpCO2 
estimator at daily-to-weekly time step

• Current state of the art:
– Using satellite or model estimates of key 

controlling factors (SST (1st order), 
Chl/SSS/ML) + ship-based CO2 
measurements to develop empirical 
models

– Recent examples:  Signorini et al. 2013; 
Liu-JPL with SVR; Chierici et al. 2012; 
Hales et al., 2012; Lohrenz & Cai, 2006; 
Zhu et al., 2009; Gledhill et al., 2009

– Regionally < 5-25 uAtm rms, globally  
higher
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Objective – global space/time ΔpCO2 
estimator

• Issues:
– Is the ocean pCO2 data sampling coverage 

(time & space) sufficient to train a model 
– Validation can be tenuous (how to determine 

sample independence?)
– Choice of inputs:  often not mechanistic (e.g. 

lat, long, time_day, time_year) nor sufficient 

– Is upper ocean pCO2 too variable for such 
global or even regional models?

– What level of accuracy needed for gas 
transfer rate investigations and flux 
products?
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Our approach – focus on time series

• Assumption: without time resolved algorithm 
training datasets, pCO2 prediction is likely 
under-constrained

• Desired training sets  - continuous in situ 
pCO2 data with sub seasonal sampling and 
limited regional span
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Ocean pCO2 time series data for algo input 
• Goal:   Obtain virtual and actual time series data
• Requirements

– sub seasonal resolution
– at least one complete annual cycle
– select several diverse ocean regions and apply consistent 

algorithm development approach
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VIRTUAL (SOCAT) MOORED

Very few regions yielding a time 
series, even using recent SOCAT

Several (few) of the global network 
have multi-month time sets online



Methods overview
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5 site training sets:  Satellite matchups + buoy 
pCO2

LS regression modeling
Multiple Linear Regression
Neural Network

Mechanistic modeling (e.g. 1-D temp-
normalized pCO2 vs. DIC_bio,  carbonate 
closure with TA(SSS) ) NOT DISCUSSED 
HERE

Similar methodology at each sites, 3 N Pac, 1 
S Pac, 1 N. Atlantic  + an overall model for 
experimentation

Validation



Overall matchup dataset creation, site-by-site
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Note: from 7 M pCO2 samples 
down to few hundred samples per 
site

Total buoy 
measurements
and coincident 
cloud-free 
satellite data

pCO2, in situ and 
satellite data used for 
algorithm training 

Type Source Time Spatial Res.

In situ SST Mooring sub-daily m

In situ SSS Mooring sub-daily m

In situ pCO2 Mooring sub-daily m

Sat. Chl_a GlobColour daily 9 km

Sat. SST & PAR Aqua-MODIS daily 9 km

Sat. NPP OSU/MODIS 8-day 9 km

Model MLD OSU/hycom 8-day 9 km



Site-specific multiple linear regression 
– what inputs help?
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Stratus Time series pCO2 modeling

Salinity drives 
largest  variance 
reduction 

Ocean color also 
contributes 

Similar at each site 
PAPA, BATS, HOTS



Neural Network – factor 2 improvement
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• Neural network 
solutions superior 
at each site

• Similar rms 
reduction as 
variables added up 
to 4 inputs (chosen 
best case)

• Similar reduction 
and results site-by-
site

Stratus Time series pCO2 modeling - NN
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Stratus Time series pCO2 model       NN (SST, MLD)
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Stratus Time series pCO2 model        NN (SST, MLD, SSS, NPP)



assessment with ship data – 
near Stratus
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Use independent ship data surrounding 
the site with same satellite matchups

In situ vs. predicted colored by distance 
( log10(distance^-1)

agreement not impressive

VOCALS cruise 
data

Stratus



assessment with ship data –  
near BATS
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Use independent ship data surrounding 
the site with same satellite matchups

In situ vs. predicted colored by distance 
( log10(distance^-1)

SOCAT + Clivar 
cruise data

BTM



further assessment
required
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Future? Multi-site algorithm 
why, why not, how successful at each site and elsewhere?
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Pooling time series 
data and model 
training to create a 
single multi-site 
algorithm

RMS goes up factor of 
1.5-2 at each site (Still 
all less than 8 uAtm)
 



Future?  - Liu et al. support vector 
regression algorithm**
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•Adding geography 
and time in the input 
suite

•16 uAtm rms against 
withheld validation 
data 

•Very dependent on 
good pCO2 data 
coverage in 
space/time  (200 k + 
SOCAT samples used)

** http://aquarius.umaine.edu/docs/aqsci2012_WGC-02-Timothy.pdf



Future?  - Liu et al. support vector 
regression algorithm**
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** http://aquarius.umaine.edu/docs/aqsci2012_WGC-02-Timothy.pdf

• Doing quite well even on time series nodes that are not in the data 
set
• Some 10-15 uAtm overshoot in summer



Summary
•  First steps at time series pCO2 sites and their utility for improving ocean pCO2 
prediction models
•  Contributions -  a) methodical means for evaluating satellite inputs and their 
value in the inversion,  b) revisiting pCO2 training and validation datasets  
•  Neural networks outperforming Multiple Linear regression
•  After SST and MLD, improvements with SSS, satellite-derived NPP (PAR)
•  Our site-based algorithms yield < 5-6 uAtm rms, all-site NN < 8 uAtm
•  BUT do they not appear to travel well, even within the region  ???

FUTURE
•  Can apply/expand any aspect within the OAFlux Cloud matrix to test further 
(e.g. SMOS SSS, GlobCoulour)
•  Bringing in geography & time inputs + more data (cf. Liu approach) may indeed 
be the path forward at global scale (but is it better than climatology for SOLAS?) 
•   More gas flux evaluation at time series nodes?

*** We wish to acknowledge the use of field and satellite data from NOAA, WHOI, 
SOCAT, and the space agencies. ****
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