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M as S fl LI CO2 Time-series and Moorings Project

Click on a basin for data and information
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e Cons:
— time coverage, very fewl =

for even one annual cycl

— spatial coverage, many basins (e.g. SO, Indian
Ocean, and S. Pacific & Atlantic are very sparsely
sampled)
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US East Coast
example from
Signorini et al 2013

More than 800,000
iIndiv. samples,
1987-2011

Few pixels with
monthly coverage
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Fig. 3. Color-coded SOCAT surface ocean pC0: cuise macks (3) and comesponding cpastal binned data (o) with "w
azszocizted color-coded temporal coverage in months. The highest femporal coverage comesponds to the maost

travelled routes (in orange to red), e, most frequent destination ports (Boeston, New YVork, Morfolk, Miami) used by Ifremer



Objective — global spacel/time ApCO2
estimator at daily-to-weekly time step

e Current state of the art:

— Using satellite or model estimates of key
controlling factors (SST (1% order),
Chl/SSS/ML) + ship-based CO2
measurements to develop empirical
models

— Recent examples: Signorini et al. 2013;
Liu-JPL with SVR; Chierici et al. 2012;
Hales et al., 2012; Lohrenz & Cal, 2006;
Zhu et al., 2009; Gledhill et al., 2009

— Regionally < 5-25 uAtm rms, globally
higher
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Objective — global spacel/time ApCO2

estimator
* |ssues:

— Is the ocean pCO2 data sampling coverage
(time & space) sufficient to train a model

— Validation can be tenuous (how to determine
sample independence?)

— Choice of inputs: often not mechanistic (e.qg.
lat, long, time_day, time_year) nor sufficient

— |s upper ocean pCOZ2 too variable for such
global or even regional models?

— What level of accuracy needed for gas
transfer rate investigations and flux
products?
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Our approach - focus on time series

* Assumption: without time resolved algorithm
training datasets, pCO2 prediction is likely
under-constrained

* Desired training sets - continuous In situ
nCO2 data with sub seasonal sampling and
iImited regional span
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Ocean pCO2 time series data for algo input

e Goal: Obtain virtual and actual time series data
"‘ * Requirements

— sub seasonal resolution

----- - - “ — atleast one complete annual cycle
' ' — select several diverse ocean regions and apply consistent et
VIRTUAL (SOCAT) algorithm development approach MOORED

Very few regions yielding a time Several (few) of the global network
have multi-month time sets online

Serles’ even USIng recent SOCAT €03 Time-series and Moorings Project

Click on @ basin for data and information

Pixels with at least 8 months data for 2 years: 2005 and 200F
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Methods overview

5 site training sets: Satellite matchups + buo o sy
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Similar methodology at each sites, 3 N Pac, 1

S Pac, 1 N. Atlantic + an overall model for
experimentation

Validation
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Overall matchup dataset creation, site-by-site

Type
In situ SST

In situ SSS
In situ pCO2

Sat. Chl_a
Sat. SST & PAR
Sat. NPP
Model MLD

Note: from 7 M pCO2 samples
down to few hundred samples per

site

Source Time Spatial Res.
Mooring sub-daily m
pCO2, in situ and
Moori -dalil .
ooring sub-daily satellite data used for
2eeine SUTEEY i algorithm training
GlobColour daily 9 km
Aqua-MODIS daily 9 km
OSU/MODIS 8-day 9 km
OSU/hycom 8-day 9 km
Source Type | Region Time # total points | # satellite
period (daily/native) | extractions
Total buoy (all reqd)
measurements Stratus Buoy S. Pacific | 2006-2008 | 1185/9543 25819
. . Papa Buoy N. Pacific | 2007-2010 | 809/6343 68
and coincident [cce Buoy | West 2008-2010 | 559/4468 162
coast
CIOUd_ free WHOTS Buoy HOTS 2007-2009 | 598/4803 287
satellite data BATS Buoy | N.Atl. | 2005-2007 | 709/5345 384
SHIPBOARD
Clivar Ship Atlantic 1997,2007 | 4556 701
Carina Ship N. Atl.
SOCAT Ship N. Atl. 1998-2001 30040
VOCALS Ship S. Pac. 2008-2009 6094
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Site-specific multiple linear regression
— what inputs help?

MLR
T

Stratus Time series pCO2 modeling
Inputs RMS (uatm) # pts *
g SST, MLD 17.8 339
¢ SST, MLD, SSS 12.3 339
SST, MLD, SSS, Chl 14.8 339
SST, MLD, SSS, NPP 11.3 339
SST, MLD, SSS, NPP, bbp/Chl 10.0 339
1 SST, MLD, SSS, NPP, bbp/Chl, 8.7 62
CDM

Salinity drives

6 = largest variance
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Neural Network — factor 2 improvement

Stratus Time series pCO2 modeling - NN

Inputs RMS (uatm) # pts
SST, MLD 7.4 339
SST, MLD, SSS 49 339
SST, MLD, SSS, Chl 4.4 339
SST, MLD, SSS, NPP 3.8 339
SST, MLD, SSS, NPP, bbp/Chl 4.2 339
SST, MLD, SSS, NPP, bbp/Chl, 4.8 62
CDM
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* Neural network
solutions superior
at each site

e Similar rms
reduction as
variables added up
to 4 inputs (chosen
best case)

* Similar reduction
and results site-by-
site
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Stratus Time series pCO2 model NN (SST, MLD)
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Stratus Time series pCO2 model NN (SST, MLD, SSS, NPP)
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assessment with ship data —
near Stratus

Use independent ship data surrounding
the site with same satellite matchups
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assessment with ship data —
near BATS

Use independent ship data surrounding

the site with same satellite matchups 450 .
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further assessment
required
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Future? Multi-site algorithm
why, why not, how successful at each site and elsewhere?

NN - all data: N=2707
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Pooling time series o wHoTS B D o
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RMS goes up factor of
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Future? - Liu et al. support vector
regression algorithm**

*Adding geography
and time in the input

suite

Qinput (3-day): sin(day), cos(day), lat,
*16 uAtm rms against sin(lon), cos(lon), SST (AMSR-E) , Chl-a
withheld validation (SeaWiFS+MODIS TERRA+MODIS Aqua),
data SSS (Levitus climatology), Mixed layer

depth (GODAS).
*Very dependent on
good pCO2 data
coverage in
space/time (200 k +
SOCAT samples used)

** http://aquarius.umaine.edu/docs/agsci2012_WGC-02-Timothy.pdf
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Future? - Liu et al. support vector
regression algorithm**
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* Doing quite well even on time series nodes that are not in the data
set
* Some 10-15 uAtm overshoot in summer

** http://aquarius.umaine.edu/docs/agsci2012_WGC-02-Timothy.pdf
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Summary

* First steps at time series pCO2 sites and their utility for improving ocean pCO2
prediction models

* Contributions - a) methodical means for evaluating satellite inputs and their
value in the inversion, b) revisiting pCO2 training and validation datasets

* Neural networks outperforming Multiple Linear regression

» After SST and MLD, improvements with SSS, satellite-derived NPP (PAR)

* Our site-based algorithms yield < 5-6 uAtm rms, all-site NN < 8 uAtm

* BUT do they not appear to travel well, even within the region ???

FUTURE
* Can apply/expand any aspect within the OAFlux Cloud matrix to test further
(e.g. SMOS SSS, GlobCoulour)
* Bringing in geography & time inputs + more data (cf. Liu approach) may indeed
be the path forward at global scale (but is it better than climatology for SOLAS?)
* More gas flux evaluation at time series nodes?

*** We wish to acknowledge the use of field and satellite data from NOAA, WHOlI,
SOCAT, and the space agencies. ****
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