Remote sensing algorithm for sea surface \(\text{CO}_2 \) in the Baltic Sea

*Gaëlle Parard*¹, A. Rutgerson¹ and A.A. Charantonis²

¹ Department of Earth Sciences, Uppsala University, Sweden
² LOCEAN, IPSL/UPMC/CNRS, Paris, France
Context

- Problem for the quantification of the oceanic sink is thus the spatial and temporal distribution of available in-situ pCO$_2$ data
- Constrain the carbon fluxes in the Baltic sea remains particularly challenging
- Worldwide networks of measurements of surface water pCO$_2$ have been initiated in the 1990s (Poisson et al. 1993; Takahashi et al., 1993-2009 Jamet et al, 2007...).
- Data available can be use to this type of study in the Baltic Sea
Swedish National Spaceboard project focusing the Baltic Sea:

- Remote sensing algorithms for sea surface CO_2 and CO_2 flux
 Anna Rutgersson, Tiit Kutser, Melissa Chierici, Gaëlle Parard, Sindu Parampil, Erik Sahlée, Maria Norman ...

→ Estimate pCO_2 variability in the global Baltic Sea with satellite data
→ Estimate the CO_2 fluxes in Baltic sea at several scale
Data availability and validation
 – In situ data (Mooring, ship)
 – Satellite data

Method : Self Organising Maps: Statistical Neuronal Approach

First Results

Conclusions and Perspectives
Data: Availability and Validation

- Measurement of pCO$_2$ (SAMI sensor) and SST (4 m depth) at Östergarnsholm station since June 2005-July 2012
- Wave mooring (SST (0.5 m))

- Strong variation of SST and pCO$_2$ → upwelling events

Workshop: Oceanflux Greenhouse Gases
In situ data: VOS and SMHI (Validation)

Ship measurements VOS comparison with the SAMI data (CDIAC+SOCAT database (Schneider et al, 2006)
- Comparison (0.2° around the SAMI sensor (black square) & Time)
- Quite good correlation factor (0.98) and STD=9 μatm

SMHI mooring in Baltic sea compare to SAMI data (Not used yet)
- pCO_2 compute with carbonate relation (TA and pH)
- Quite good
- Need validation

Workshop: Oceanflux Greenhouse Gases
No data yet for this two basin between 2005 and 2011

VOS cruises + SAMI + SMHI estimation 2005-2011
Satellite DATA

– Daily:
 ▪ SST:
 – Federal Maritime and Hydrographic Agency (BSH) processing the data from AVHRR-NOAA . 2005-2012
 – GRHSST product for Baltic sea 2007-2011
 ▪ Chlorophyll: JRC MERSEA Ocean Colour Products:
 – SeaWiFS: standard OC4-V4 algorithm, reprocessing 5.1 by the Goddard Space Flight Center (NASA) 2002-2011
 – MODIS-AQUA : reprocessing 1.1 by the Goddard Space Flight Center (NASA)
 ▪ CDOM: Modis (need to validate)

– Monthly
 ▪ Photosynthetically Active Radiation (PAR): Averages from:
 – SeaWiFS (Sept. 1997 - Dec. 2004) 4 km monthly
 – MODIS-Aqua (Jul. 2002 - Jun. 2011) 4 km monthly,
 ▪ Primary Production: Source: http://oceancolor.gsfc.nasa.gov
 – SeaDAS 6.2

– NOT Satellite Data:
 ▪ Mixed Layer Depth: hydrodynamic model General Estuarine Transport Model - www.getm.eu)
Comparison: SST satellite & SST mooring

- Daily comparison for 2005 → Good correlation (0.95)
- Similar for all year
- But problem with strong variation during upwelling event
- Validation with VOS & SMHI data

Workshop: Oceanflux Greenhouse Gases
Chlorophyll data

- Monthly spatial coverage quite good compared to the daily spatial coverage
- Interannual and seasonal high variation
- Validate chlorophyll daily and monthly product

Workshop: Oceanflux Greenhouse Gases
Method: Self Organising Maps

- Input: Multidimensional Data
- Output: A clusterization of the data through projection on a topologically organised 2D map, in a way that respects the underlying variability of the higher dimension.

Observation
- Initially used for the training of the map
- New observations are compared with the elements of the map to classify them.

Self Organising Map:

Classes:
- Arranged by similarity
- Correspond to:
 - an index number representing the position on the SOM
 - a referent vector

Workshop: Oceanflux Greenhouse Gases
Reconstruction through SOM

Compare the observable data with the corresponding values of all Referent Vectors of the SOM.

- **PCO2**: Observable data
- **Incomplete Vector**: Referent Vector of the i-th Class, \(i \in \{1, \ldots, N_{\text{ref}}\} \)

Takes the value of the most similar referent vector.

Workshop: Oceanflux Greenhouse Gases

25/09/2013
First results: not enough data at monthly scale

- First test monthly scale: (pCO$_2$, SST, PAR, PP, Chl, MLD)
 - 2 data bases: Construct the Map/ Validate (\approx10%)
 - Validation difficult: pCO$_2$ ± 20 μatm
 - High error but not enough data to conclude

- Second test daily scale: (pCO$_2$, SST, Chl, time)
 - pCO$_2$: SAMI sensor + VOS ship data
 - To represent the evolution in time: $time = \sin\left(\frac{Nbday \times 2\pi}{365}\right)$
 - Principal component analysis:
 - 4 parameters stronger link:
 » First mode explain 44 % of the variance of the phenomen
 » First mode explain at 93% by SST strongly anti correlate by time
 » Second mode by chlorophyll
 - All parameters significantly correlated to the first 3 axes.
First results: Repartition

- pCO$_2$ (µ atm)
- SST (°C)
- Chl (mg m$^{-3}$)
- Number of observations
- Time

Workshop: Oceanflux Greenhouse Gases

25/09/2013
First Results: high error on pCO$_2$

- Difference pCO$_2$ high: 56% less than 50 μatm
- 89% less than 1 °C
- 86% less than 2 mg.m$^{-3}$
- Higher error on time

Outliners: ±2σ remove: winter time

<table>
<thead>
<tr>
<th></th>
<th>SST</th>
<th>CHL</th>
<th>pCO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.99</td>
<td>0.97</td>
<td>0.71</td>
</tr>
<tr>
<td>ΔSTD</td>
<td>0.04</td>
<td>1.08</td>
<td>5</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.85</td>
<td>1.8</td>
<td>73</td>
</tr>
</tbody>
</table>

→ Need other parameter like MLD and CDOM
→ Validate all the data used
Data validation and availability:
- SST and pCO$_2$ quite good compare to other data
 - Need to verify in all Baltic Sea
- Difficult to validate: Chlorophyll and CDOM data

Daily scale much better
- Distribution problem Vs number of data: use data before 2005
 - Have more pCO$_2$ data in all basin of the Baltic sea (Gulf of Bothnia and Gulf of Finland)

Estimate the air-sea fluxes in Baltic sea with the pCO$_2$ estimation