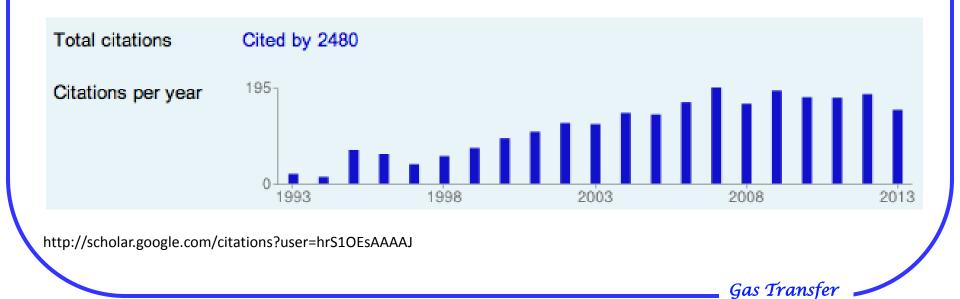

Relationship Between Wind Speed and Gas Exchange Over the Ocean Revisited

# Rik Wanninkhof Atlantic Oceanographic and Meteorological Laboratory (AOML) of NOAA 4301 Rickenbacker Causeway Miami FL 33149

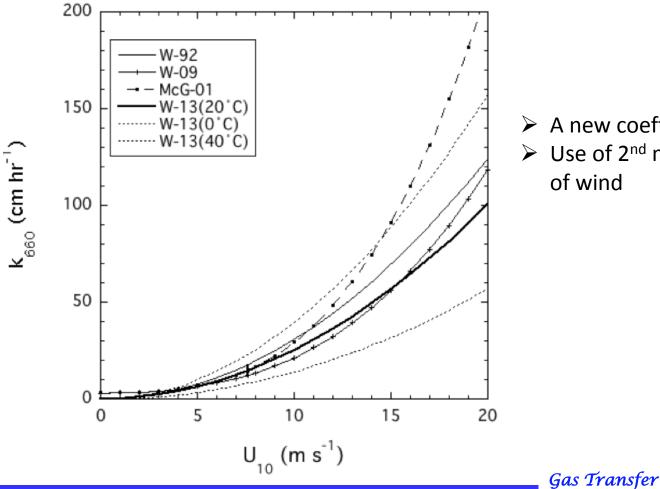



Relationship Between Wind Speed and Gas Exchange Over the Ocean

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. C5, PAGES 7373-7382, MAY 15, 1992

#### Relationship Between Wind Speed and Gas Exchange Over the Ocean

**RIK WANNINKHOF**<sup>1</sup>





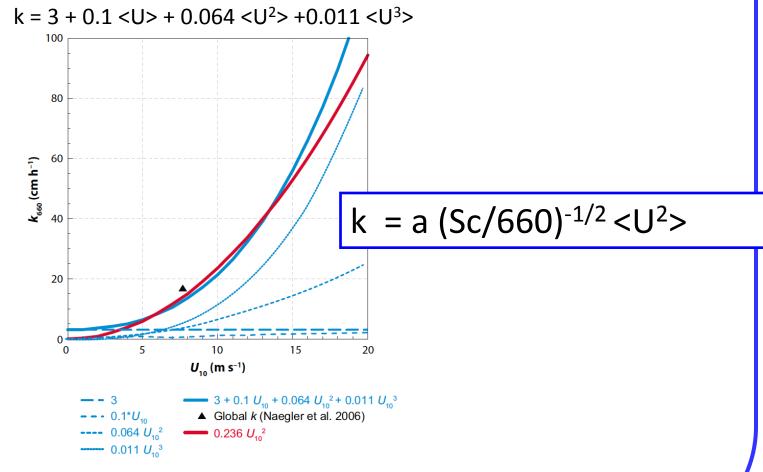



# Relationship Between Wind Speed and Gas Exchange Over the Ocean, **Revisited**

 $k = 0.251 < U^2 > (Sc/660)^{-0.5}$ 

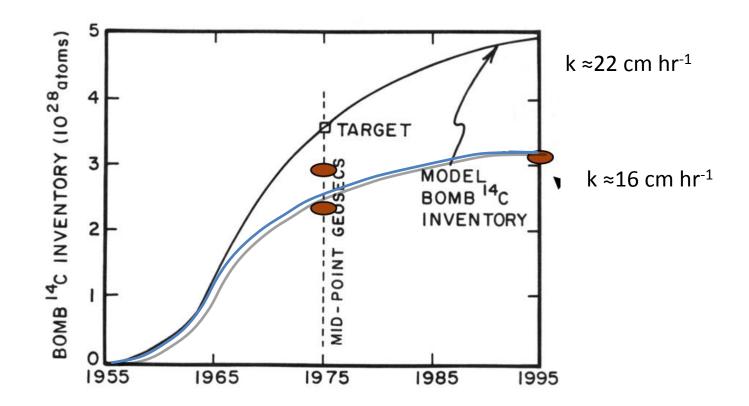


A new coefficient  $\blacktriangleright$  Use of 2<sup>nd</sup> moment of wind


# Relationship Between Wind Speed and Gas Exchange Over the Ocean, Revisited Focus on CO<sub>2</sub> exchange

### asic assumptions

- 1. An assumed functionality between gas transfer and wind over the ocean
- 1. Global constraint on gas exchange (k): <sup>14</sup>C Updated & Improved
- 1. Link the global average k to a global average wind speed  $\langle U_{10} \rangle N_0$
- 1. Normalization for temperature **Opdated Schmidt numbers (-2 to 40 °C)**
- Include the impact of variability of the wind on the average k No use local wind product (CCMP 0.25° 6-hr)


# An assumed functionality between gas transfer and wind over the ocean

While a multi-function I relationship ("hybrid model") more accurately represents the processes, it can be well approximated by a quadratic



Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. S., and McGillis, W. R.: Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing, Annual Reviews Mar. Science, 1, 213-244, 101146/annurev.marine.010908.163742, 2009.

Global constraint on gas exchange (k): <sup>14</sup>C - Updated & Improved



p<mark>ted Global bomb <sup>14</sup>C inventory :</mark> Suggests global gas transfer velocity ≈ 16 cm hr<sup>-1</sup> gler, 2009)

Link the global average k to a global average wind speed  $\langle U_{10} \rangle$  - **No** 

W-92:  

$$= 7.4 \text{ m s}^{-1}$$
  $= 21 \text{ cm hr}^{-1}$   $= 0.39$   
 $^{2}$ 

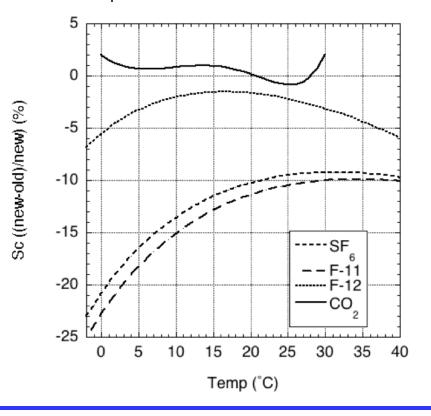
Improved: Much better estimates of wind over the ocean $<U_{10}> = 7.3 \text{ m s}^{-1}$  $<k> = 16 \text{ cm hr}^{-1}$  $<k> = 0.30 < U_{10}>^2$ 

Updated bomb <sup>14</sup>C has the largest impact on the estimate of the coefficient

### Normalization for temperature Updated Schmidt numbers (-2 to 40 °C)

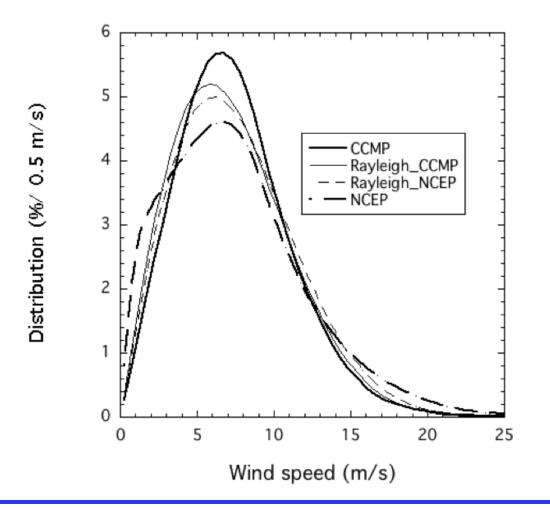
Sc= A+Bt +Ct<sup>2</sup>+dt<sup>3</sup> +Et <sup>4</sup> (T in  $^{\circ}$ C)

Table 1. Coefficients


versus temperature for

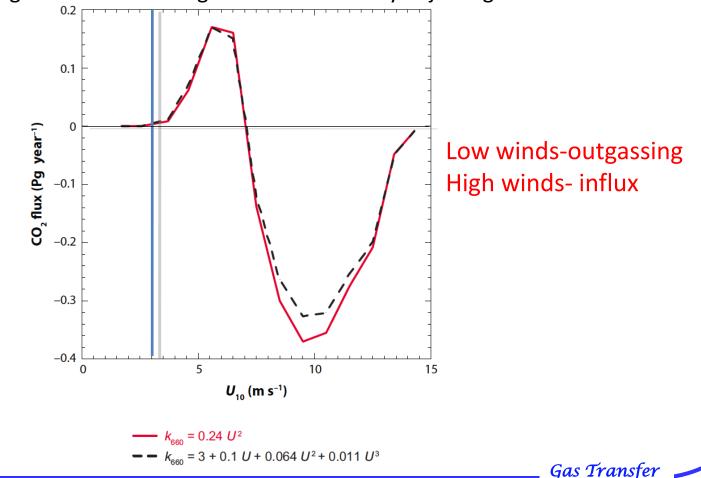
seawater (35 °/ $_{00}$ ) for temperature non-2 C to 40 C.

| Gas                             | А      | В       | С       | D         | E           | Sc(20 °C) |
|---------------------------------|--------|---------|---------|-----------|-------------|-----------|
| Seawate                         | r      |         |         |           |             |           |
| <sup>3</sup> He <sup>a</sup>    | 369.11 | -19.485 | 0.60131 | -0.011005 | 0.000087258 | 146       |
| He <sup>a</sup>                 | 416.36 | -21.979 | 0.67828 | -0.012413 | 0.000098427 | 165       |
| Ne <sup>a</sup>                 | 844.95 | -48.305 | 1.5615  | -0.029273 | 0.00023487  | 307       |
| Ar <sup>b</sup>                 | 2078.1 | -146.74 | 5.6403  | -0.11838  | 0.0010148   | 615       |
| 02 <sup>b</sup>                 | 1920.4 | -135.6  | 5.2122  | -0.10939  | 0.00093777  | 568       |
| N <sub>2</sub> <sup>b</sup>     | 2304.8 | -162.75 | 6.2557  | -0.13129  | 0.0011255   | 682       |
| Kr <sup>a</sup>                 | 2252   | -147.33 | 5.1729  | -0.10141  | 0.00083242  | 696       |
| Xe <sup>a</sup>                 | 2975.2 | -201.06 | 7.2057  | -0.14287  | 0.0011798   | 882       |
| $CH_4^a$                        | 2101.2 | -131.54 | 4.4931  | -0.08676  | 0.00070663  | 687       |
| $CO_2^a$                        | 2116.8 | -136.25 | 4.7353  | -0.092307 | 0.0007555   | 668       |
| N <sub>2</sub> O <sup>b</sup>   | 2356.2 | -166.38 | 6.3952  | -0.13422  | 0.0011506   | 697       |
| Rn <sup>a</sup>                 | 3489.6 | -244.56 | 8.9713  | -0.18022  | 0.0014985   | 985       |
| SF <sub>6</sub> <sup>c</sup>    | 3177.5 | -200.57 | 6.8865  | -0.13335  | 0.0010877   | 1028      |
| DMS <sup>d</sup>                | 2855.7 | -177.63 | 6.0438  | -0.11645  | 0.00094743  | 941       |
| F-12 <sup>e</sup>               | 3828.1 | -249.86 | 8.7603  | -0.1716   | 0.001408    | 1188      |
| F-11 <sup>e</sup>               | 3579.2 | -222.63 | 7.5749  | -0.14595  | 0.0011874   | 1179      |
| CH <sub>3</sub> Br <sup>f</sup> | 2181.8 | -138.4  | 4.7663  | -0.092448 | 0.0007547   | 701       |
| CCl <sub>4</sub> <sup>b</sup>   | 4398.7 | -308.25 | 11.798  | -0.24709  | 0.0021159   | 1315      |
|                                 |        |         |         |           |             |           |


### Normalization for temperature Updated Schmidt numbers (-2 to 40 °C)

- Change in curve fit < 2 % uncertainty</p>
- Measured vs estimated diffusion coefficient (D): up to 25 % difference
- Assume that fresh water D is 6 % greater than salt water D
- Saltzman's group saw no difference in diffusion coefficients using fresh water or a 35 g/l sodium chloride (NaCl) solution for, SF<sub>6</sub>, CH<sub>3</sub>Cl ,and F-11 but did see ≈ 4-7 % difference for CH<sub>4</sub> and F-12.




Include the impact of variability of the wind on the average k No, use local wind product (CCMP 0.25° 6-hr)

Wind products have appreciable differences and differences will contribute significantly to estimated flux



### Include the impact of variability of the wind on the average k No, use local wind product (CCMP 0.25° 6-hr)

Due to co-variation of wind speeds and  $\Delta pCO_2$  differing wind speed distribution leads to a 0.2 Pg C yr<sup>-1</sup> ( $\approx$ 15 %) lower net CO<sub>2</sub> uptake by the ocean uptake for the CCMP winds compared to NCEP-2 winds even after accounting for differences in global mean wind by adjusting coefficient "a"



# Relationship Between Wind Speed and Gas Exchange Over the Ocean, Revisited Uncertainty in k for CO<sub>2</sub> exchange

1.The coefficient (10 %- Ho et al.; Sweeney et al.; Nightingale et al.) for 3-12 m s<sup>-1</sup>
2.Wind: 0.3 m s<sup>-1</sup> at 7.3 m s<sup>-1</sup> (4%)
3.Schmidt number: 5 %
4.Low wind (k = 0.0251 U<sup>2</sup> vs. constant 3 cm hr<sup>-1</sup> up to 3.5 m s<sup>-1</sup>)
5.High wind, additional 10 % uncertainty (> 12 m s<sup>-1</sup>)

 $\Delta k k^{-1} = 0.0251/0.251 + \Delta < U^2 > / < U^2 > +0.5 \Delta Sc/Sc + \Delta k k^{-1}_{(k=3, U10<3.5)} + \Delta < U^2 > / < U^2 >_{U10>12}$ 

 $\Delta k k^{-1} = 0.1 + 0.04 + 0.025 + 0.01 + 0.02 = 0.20$ 

∆k ≈20 %

Gas Transfer

Relationship Between Wind Speed and Gas Exchange Over the Ocean Revisited

Conclusion:

 $k = 0.251 \pm 0.05 < U^2 > (Sc/660)^{-0.5}$ 

Acknowledgments:

This update on the manuscript "Relationship between wind speed and gas exchange over the ocean" was inspired by the recognition of the original work through the ALSO John Martin Award.

Thanks many colleagues who made the basic physical chemical measurements, improved the wind speed products, and those who performed experimental and theoretical studies on the controls of seaair gas transfer (many who are in this room).