Concurrent DMS and CO₂ air/sea gas transfer

Tom Bell Plymouth Marine Laboratory, UK University of California, Irvine

Conceptual View of Gas Transfer

Motivation(s)...

•Biogeochemical budgets of climate-relevant gases: DMS, NH₃, CH₃Br, CH₃Cl, CHBr₃, CO₂, N₂O, CH₄, O₂

Long term goal...

• Physically-realistic parameterizations coupling heat, momentum and gas fluxes.

Tracers for measuring gas exchange:

	DMS	CO ₂
$\Delta C/C_{air}$	Large	Small
Solubility	Moderate	Relatively insoluble
Major control(s) on air/sea gas transfer	Interfacial stress	Interfacial stress Bubbles

The air/water interface

- Dynamic, heterogeneous
 - Diffusivity / viscosity (Sc)
 - Buoyancy-driven turbulence
 - Shear-driven turbulence
 - Waves
 - Wave breaking (bubbles)
 - Surface tension (surfactants)
- Range of spatial/temporal scales
- Different gases will not be affected equally by these processes!

Interactions between waves and wind using Particle Image Velocimetry (Veron et al., 2008)

Micrometeorological technique: Eddy Covariance

 $\frac{Flux}{\Lambda C}$

- Covariation in vertical wind (w) and gas of interest (c)
- Timescale = minutes-hours
- Flux footprint extends ~1 km upwind
- Assumes horizontal spatial homogeneity

Previous DMS Eddy Covariance Data

(Univ. of Hawaii and Univ. of California, Irvine)

R/V Knorr. North Atlantic (June/July 2011)

Knorr 2011 Setup Eddy Covariance Flux ΔC **3-D Winds** (Sonic Anemometer) Atm. **Motion Air Inlet** Pak II DMS: mass spectrometry (CIMS) CO₂: Closed path IRGA Seawater Ship's Inlet

10 min average data

k_{660} vs Wind Speed (U_{10})

 k_{CO2} scatter is greater than k_{DMS} scatter 10 min average data **PLOT REMOVED**

PLOT REMOVED

$$k_{DMS} < k_{CO2}$$

bubbles?

 k_{CO2} and k_{DMS} < COAREv3.1

Station Data: k_{DMS}

Spatial/temporal variations in k_{DMS} vs. U_{10} relationship

Station 191 is different (at high wind speeds)

Bell et al., ACPD (2013)

 k_{DMS} vs. waves and whitecaps

Station Data: k_{CO2}

PLOT REMOVED

Station 191 variations in k_{DMS} vs. U_{10} relationship are not observed in k_{CO2} data

Compensated by bubble flux?

Conclusions:

- Wind speed is not the sole factor controlling gas transfer
- Evidence for wave effects on *k*_{interfacial}?
- Evidence for bubble effects on k_{CO2} ?
- Role for surfactants?
- Multiple gases help understand fundamental gas transfer processes.

Eric Saltzman

Warren De Bruyn

Cyril McCormick

...a team effort!

Further acknowledgements: Brian Ward & Kai Christensen, Mingxi Yang

Scott Miller