Aims to improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

P. Vlahos^{1,2}, J. Liang³and E.C. Monahan¹

¹Departments of Marine Sciences & ²Environmental Engineering, University of Connecticut, Groton ³Applied Physics Laboratory, University of Washington, Seattle

Parameterizing the bubble-

ideal gas, DMS

mediated air-sea flux of a non-

Aims to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Physical-Chemical effectsWhat are bubble effects for non-ideal gases such as DMS

Enhancement in gas transfer rate

- chemical properties may be useful in predicting bubble effects for non-ideal gases such as methylated sulfur species
- Couple with air-sea bubble model

Bubble Effects

Alms to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Addressing solubility in a bubbly surface ocean

In senescent conditions

 $C_{i,w} \approx \gamma_{i,w}^{-1} V_i^{-1}$

At high wind speeds (>12 m/s)

$$C_{i,mix} \approx \gamma_{i,mix}^{-1} V_i^{-1} \approx (1-x_b)C_{i,w} + (x_b) K_H C_{i,w} + K_{b-film} C_{i,w}$$

$$\approx [(1-x_{b})\gamma_{i,w}^{-1} + (x_{b})\gamma_{i,b}^{-1} + \Phi_{B}\gamma_{i,b-film}^{-1}]V_{i}^{-1}$$

or

Where $\Phi_B = f(x_b)$ = bubble surface area per m² $\gamma_{i, j}$ = activity coefficient of substrate I in phase j V_i = molar volume of substrate i in cm³mol⁻¹ X_b = volume fraction of bubbles in sample volume

Alms to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Henry's Law Constant, K_{iH}

K_{iH} = vapor pressure/solubility

 $= \rho_i / C_{i,w}$

= γ_{iw} , $\rho_{iL}V_w$

 $K_i = K_{iH}/RT$ (dimensionless)

$$K_{i,mix} = K_i / (1 + (C_{mix} / C_w) \Phi_B)$$

Alms to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

In terms of flux

$$Flux = k_i \Delta C_{AW}$$

$$k_i = [1/(k_a K_{i,mix}) + 1/k_w]^{-1}$$

where $K_{i,mix} = K_i / (1 + (C_{mix}/C_w) \Phi_B)$

Aims to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Predicted influence of wind speed on transfer velocities of surface active gases

Compound	Chemical Formula	MWt , g/mol	Solubility, (mol/L)	K, (dimensionless, air/water)
MSH	CH ₃ SH	48.11	0.195	0.0115
DMS	C ₂ H ₆ S	62.13	0.355	0.08
DMSO	C ₂ H ₆ SO	74.12	miscible	5.25 x 10 ⁻⁷
DMDS	$C_2H_6S_2$	94.20	0.0363	0.0428

From Vlahos et al (2011), Gas Transfer at Water Surfaces, 2010

Alms to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Liang et al. 2011, 2012, 2013

simulated total bubble number density (number per m³) at u10 = 17.5 m/s.

Aims to improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Relationship between bubble e-folding depth z_0 and wind speed u_{10} . (Black dots: observations by *Vagle et al.* [2010]; Blue circles: bubbly flow solutions assuming waves in equilibrium with local winds.

Liang et al. 2013

Aims to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

This model

- bubbles of sizes >35 microns are included
- fraction of different gases change with time
- considers the effect of ambient pressure change on bubble size change
- readily coupled to upper ocean dynamic model
- Bubble injection is constrained by laboratory and *in situ* observations

Total Gas Flux

$$F = F_{sfc} + F_p + F_c + SP \frac{C_{mix}}{C_w} \int \frac{d\Phi}{dt} dz$$

- F_{sfc} is the gas flux through the ocean surface
- F_p is the gas flux through large bubbles that partially dissolve
- F_c the gas flux through small bubbles that completely dissolve
- the last term is an effective gas flux due to the change of bubble surface area <u>assuming a</u> <u>proportionate fraction of molecules attach</u>

Aims to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Estimated from Liang Model

$$F = k_{sfc} \left(S_{eff} P - C \right) + k_b \left[S_{eff} P (1 + \Delta_{overpressure}) - C \right] + F_c + SP \frac{C_{mix}}{C_w} \int \frac{d\Phi}{dt} dz$$

$$F = k_{tot} \left[S_{eff} P(1 + \Delta) - C \right]$$

Aims to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Relationship between Φ and wind speed

(1) the total injected bubble amount in the model is based on observations, which are limited, and a source of possible uncertainty; $\Phi_{\rm B} = 0.40 \ ({\rm U}/10)^3$

(2) the formula for k_w in VM09 is at the lower end of observed values $\Phi_B = 0.090 \ (U/10)^3$

Alms to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Gas flux profile for organic gases

Alms to Improve the quantification of air-sea exchanges of greenhouse gases, of prime importance in the climate system.

Temperature effects

- DMS and derivatives expected to be moderately surface active
- At high winds (> 12 m/s) the surface ocean is significantly altered
 - the effective activity coefficient and therefore the fugacity of surface active compounds is expected to decrease
 - The result is higher relative water-side concentrations in the bubble influenced layer and lower transfer velocities

Current Results

- Air-sea flux of DMS may be overestimated using traditional empirical models
- DMS air-sea flux reaches upper thresholds governed by a piston velocity near 25 cm/h and the corresponding concentration gradient.
- This sets upper DMS air-sea transfer rates at **120** µMm⁻²d⁻¹ based on observed field concentrations. (DMS C_w's range from <1 to 20 nM (Lee et al 2010; Zang et al, 2008))

Current Results

- Sensitivity analysis on nitrogen and oxygen
- Coupling to Lagrangian model
 - Equilibration of fast dissolving gases in partially dissolved bubbles will be explicitly resolved.
 - Bubble size distribution will be better resolved.
 - Add equilibration effect to the model Woolf [1993], Keeling [1993]
- Modeling of other of biogenic gases

Next Steps...

That's all for now...

- DMS C_w's range from <1 to 20 nM (Lee et al 2010; Zang et al, 2008)
- DMSP p + d, 9.22 (2.85-19.73) and 17.50 (4.33-36.09)nM (Zang et al, 2008)
- <u>Photodegradation rates</u> 0.006 to 0.028 nM/(Wm⁻²) (Miles et al., 2009)
- <u>DMS degradation rates</u> 0.04 to 0.66 d⁻¹(Kieber et al., 1996)
- <u>DMS production rates</u> 0.7 to 0.9 nMd⁻¹ (Bailey et al 2008)

What we know

DMS box model

Equatorial Pacific (PMEL)- 15°N to 15°S DMS is relatively constant both seasonally and interannually (2.7 ± 0.7 nM (Bates and Quinn, *Geophys. Res. Lett.*, 24:861-864, 1997).

Observations

Surface ocean DMS

Earth Interactions Volume 8 (2004)

Bates et al. [1992]

7a - Annual DMS air-sea flux (mmol/m²/day)

