The impact of rain on global and regional air-sea CO₂ fluxes: a 10 year time series analysis

Jamie Shutler, David Woolf, Graham Quartly, Peter Land

OceanFlux GHG is funded by:

esa and affiliated to:

National

Introduction

- Rain impacts air-sea gas exchange through a number of mechanisms.
 - Enhancing k, wet deposition of DIC, chemical dilution, SST
- Rain intensity and frequency varies considerably throughout the globe.
 - Can rain have a significant impact on global and regional net air-sea fluxes ?
- What are the ranges of these impacts on regional and global net air-sea fluxes ?
 - Are some regional fluxes impacted more than others?

Introduction

Introduction

Precipitation Estimate from the GPCP satellite/gauge combined data set

Precipitation Estimate from the GPCP satellite/gauge combined data set (mm/day)

PML

Equirectangular projection centered on 0.00°E

Data Min = 0.0, Max = 23.9

Methods

1. Global rain fluxes:

- Baseline flux default data and a wind k.
- Parameterise wet deposition flux (Fw) and rain k flux (Fk) based on previous in situ work.
- Run 10 year time series
- Calculate global and regional Fw, Fk and compare with the baseline.

PN

Methods

 $Rn = rain rate in mm h^{-1}$

Fk : Rain gas transfer (Ho et al., 1997)

 $k(rain) = [0.929 + 0.679 Rn - 0.0015 Rn^{2}] (600/Sc)^{0.5}$

Fw : Rain wet deposition (Komori *et al.*, 2007) $F_{DIC} = R_n \alpha p(CO_2)_{air}$

PN

Input Data

Dataset	Parameter	Uncertainty (precision, bias)	Reference
ESA SST CCI	SST _{skin} , ⁰C	0.14, < 0.1°C	Merchant <i>et al.</i> , JGR,2013
ESA GlobWave	U10, m s ⁻¹		www.globwave.org
Global Precipitation Climatology Project	Rain rate, mm h ⁻¹	0.05, 0.01 mm h ⁻¹	Huffman and Bolvin, 2013
Takahashi	pCO _{2,} µatm SST, ºC	0.2 µatm, 0.0 (air) 3 µatm, 0.0 (water)	Takahashi <i>et al.</i> , DSRII, 2009
NCEP CSFR	Air pressure		Saha <i>et al.</i> , 2010

PML

Example results - max Fk across all years

Air-sea CO2 flux using the H97 Ho et al., 1997 gas transfer velocity (k)

Initial yearly results –global for 1999-2009

Component	Flux (Tg C yr-1)
Rain	
Rain k (Fk)	0.01 – 0.05 (into water)
DIC wet deposition (Fw)	0.06 - 0.07 (into water)
Rain total (Fr = Fk + Fw)	0.08 – 0.11 (into water)
Rain impact on Net global fluxes (fixed 1.402)	5 - 8 %
Rain impact on Net global fluxes (variable)	5 - 6 %

Komori et al., (2007) estimated <5 % for 2001, we estimate 5.8 % (0.085 Tg C yr⁻¹)

PMI

Initial yearly results – Global

Initial yearly results – Global

Year

Initial yearly results – oceanic regions for 1999-2009

	%age impact (min to max)
Rain	
Global	5 - 6 increase in sink
Atlantic	5 - 6
Pacific	5 - 7
Indian	5 - 6
Southern	6 - 13

Initial yearly results – oceanic regions for 1999-2009

	%age impact (min to max)
Rain	
Global	5 - 6 increase in sink
Atlantic	5 - 6
Pacific	5 🕜
Indian	5 - 6
Southern	6 - 13

Greatest impact in the Southern ocean and slightly elevated in Pacific

PM

Initial monthly results – Oceanic regions for 1999-2009

	%age impact	Flux (Tg C yr⁻¹)
Rain		
Global	4 to 11 increase in sink	-11 to -4
Atlantic	4 to 12 increase in sink	-4.23 to -0.5
Pacific	-31 to +23 (6 months much greater)	-6 to +0.2
Indian	4 to 8 increase in sink	-3 to -0.3
Southern	±15 (5 months much greater)	-1.6 to +0.2

Initial monthly results – Oceanic regions for 1999-2009

		%age impact	Flux (Tg C yr-1)
	Rain		
	Global	4 to 11 increase in sink	-11 to -4
	Atlantic	4 to 12 increase in sink	-4.23 to -0.5
≽	Pacific	-31 to +23 (6 months much greater)	-6 to +0.2
	Indian	4 to 8 increase in sink	-3 to -0.3
>	Southern	±15 (5 months much greater)	-1.6 to +0.2

Rain increases sink in Atlantic and Indian oceans

Rain can modulate monthly fluxes in Pacific and Southern oceans

Initial monthly results – Oceanic regions for 1999-2009

		%age impact	Flux (Tg C yr⁻¹)
	Rain		
->>	Global	4 to 11 increase in sink	-11 to -4
	Atlantic	4 to 12 increase in sink	-4.23 to -0.5
	Pacific	-31 to +23 (6 months much greater)	-6 to +0.2
	Indian	4 to 8 increase in sink	-3 to -0.3
->>	Southern	±15 (5 months much greater)	-1.6 to +0.2

Initial monthly results – Global

PML

Initial monthly results – Global

Largest increase in sink is generally during August and September

- Storm and hurricane season in North Atlantic ?
- East Asian monsoon ?

PML Plymouth Marine Laboratory

Initial monthly results – Southern Ocean

Plymouth Marine Laboratory

PML

Initial results - total wet deposition all years

wet_deposition so no k parameterisation wet deposition of DIC by rain so no k parameterisat

the wet_deposition so no k parameterisation wet deposition of DIC by rain so no k parameterisation gas transfer velo

PM

Initial results - total wet deposition all years

wet_deposition so no k parameterisation wet deposition of DIC by rain so no k parameterisat

the wet_deposition so no k parameterisation wet deposition of DIC by rain so no k parameterisation gas transfer velor

Initial results - total wet deposition all years

wet_deposition so no k parameterisation wet deposition of DIC by rain so no k parameterisat

the wet_deposition so no k parameterisation wet deposition of DIC by rain so no k parameterisation gas transfer velor

PMI

Conclusions

- 10 year global analysis
- Global annual results are comparable to Komori *et al.*, 2007 which focused on 2001.
- Wet deposition appears fairly consistent between years (k rain is more variable).
- Rain increases the annual global oceanic net sink of CO_2 by up to 6 %.
 - This can be used as the estimate of rain uncertainty in annual global net fluxes.
- Regional annual variations
 - Rain can increase the Southern ocean net sink by up 13 %
- Regional monthly variations
 - Pacific and Southern ocean monthly fluxes can be significantly modulated by rain (ie > \pm 15%)
 - Instances of very large modulation (ie > \pm 50%)

To complete:

- Inclusion of a dilution model.
- 19 year run (1992-2010).
- Range of SST impacts (curves of possible impacts).
- Wave and rain correlations.

Shutler, J. D., Woolf, D. K., Quartly, G., Land, P. E., (in-prep) Quantifying the impact of rain on global and regional air-sea CO₂ fluxes, to be submitted to OceanFlux GHG workshop special issue (for ACP).

