

Air-Sea Gas Exchange at Ice Surfaces

Wade McGillis and Chris Zappa, Lamont Doherty Earth Observatory, Columbia University Brice Loose, University of Rhode Island

gas transfer controls through ice pack

Wintertime CO₂ fluxes in an Arctic polynya using eddy covariance: Evidence for enhanced air-sea gas transfer during ice formation

B. G. T. Else,¹ T. N. Papakyriakou,¹ R. J. Galley,¹ W. M. Drennan,² L. A. Miller,³ and H. Thomas⁴

The processes highlighted in blue/red are those which likely have a direct effect on air-sea gas exchange.

$$F = V \frac{dC}{dt}$$

 $F = \mathbf{K} \frac{dC}{dz}$

gas exchange and freezing ice

freezing and k (Schmidt No.)

1 hour time series showing freezing

freezing and ice growth

Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments

B. Loose,¹ W. R. McGillis,¹ P. Schlosser,¹ D. Perovich,² and T. Takahashi¹

Water reservoir

Gas reservoir (Vg)

wind wave tank in a freezer

100% open water

0% open water

k and ice growth

gas transfer velocity and open water

simulating ice chunks

laboratory scale: CRREL, NH

- 3-Tracer estimate of k (He, O_2 , SF₆) for gas transfer and ice-water segregation.
- Boundary layer CO₂ fluxes in the air boundary layer, CFT IR imaging
- Determination turbulent dissipation (ϵ) in presence of wind, surface waves, brine drainage, and heat-driven convection $\mathcal{E} = u_*^2 \frac{\mathcal{O}u}{2} + \overline{b'w'}$
- Surface area descriptions and gas transfer with an IR camera

wind tunnel complete

wind tunnel with no ocean

upstream

downstream

2 sonic anemometers 2 RH/T 2 Picarro/Licors (CO_2/H_2O)

CO₂, N2O, SF6, He, Ar

Micrometeorological Approach

-Direct covariance and measured gradients in temp, water vapor, CO_2 , and windspeed. Boundary layer gradients are measured at one fixed-elevation reference and one profiling, the gradients are then calculated by difference.

Surface Boundary Layer Exchange

$$\frac{\partial c}{\partial t} + \vec{\nabla}_h c \cdot \vec{U}_h = -\frac{\partial \left(-D_c \partial c / \partial z + \left\langle w' c' \right\rangle\right)}{\partial z} + \vec{Q}_c \qquad \frac{\partial c}{\partial z} = -\frac{\left\langle w' c' \right\rangle}{u_* \kappa z} \Phi_c(\frac{z}{L})$$

momentum
$$\tau = -\rho \overline{wu} = \rho u_*^2 = \rho C_D (U_a - U_s)^2$$
 $\frac{\kappa z}{u_*} \frac{\partial U}{\partial z} = \varphi_M(\varsigma)$

sensible
$$H = \rho c_p \overline{w\theta} = -\rho c_p u_* \theta_* = \rho c_p U C_H (T_s - T_a) \qquad \frac{\kappa z}{\theta_*} \frac{\partial T}{\partial z} = \varphi_H(\varsigma)$$

latent
$$E = \rho L_E \overline{wq} = -\rho L_E u_* q_* = \rho L_E U C_E (Q_s - Q_a) \frac{\kappa z}{q_*} \frac{\partial Q}{\partial z} = \varphi_Q(\varsigma)$$

gas $F = \overline{wc} = -u_*c_* = UC_G(C_w - C_a) = k \Delta C$ $\frac{\kappa_z}{c_*} \frac{\partial C}{\partial z} = \varphi_G(\varsigma)$ direct direct K-theory bulk covariance profiles methods

yearday 2012

yearday 2012

Gas Exchange in ICE lead (GAPS)

- wind, waves, and turbulence
- bubbles and spray
- chemical enhancement (including carbonic anhydrase)
- surfactants
- buoyancy and atmospheric stability
- rain and dilution
- evaporation, condensation, magnetic fields

"I didn't see this one coming"

summary

- nucleation experiment high solubility and low diffusivity
 - no incipient enhancement, low brine channel diffusion
- Ice cover not sufficient; freezing and ice floe
 - enhanced k and high mixing
 - relating k to ice cover
 - holistic to prognostic modeling
- □ continue to explore role of scale, seawater, temperature on k-ice

surface ice

fresh water crystals

0.29 00 759

seawater crystals

Using the annular wind wave tank we used for 1990's surfactant studies

gas transfer and ice

