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Overview

Komori et al (2007) investigated the effects of impinging rain
and rain deposition on the net global CO2 flux.

Observations from Biosphere2 Il (Rain) Experiments in 2003
SSS dilution and dependence on rain rate
K., scales with KEF in saltwater as it does for freshwater

rain

Describe the effect of Chemical Dilution on the enhancement of
gas exchange.

As this effect is confined to a very near-surface layer it is
neglected in surface mixed layer and climate models as well as
by standard measurements of surface pCO, that are normally
made at 3-5 m depth.

Quantify the range of precipitation effects on the global CO,

flux
Takahashi et al. (2009) ApCO, and NCEP Il winds
Global Precipitation Climatology Program daily rain product



Global Flux of CO,

Mean Annual Air-Sea Flux for 2000 [Rev Jun 09] (NCEP 1I Wind, 3,040K, ['=.26)
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Air-Sea Interaction Processes

VISIBLE

sensible RADIATION
heat

transfer

Infrared

DM5 y /&@Qoration
fluX €Oy exchange . s

Internal
Wave
Radiation



Global Flux of CO, Due to Rain for 2001
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turbulence (Ho et al., [1997,
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2000, 2004], Takagaki & Komori
[2007], Zappa et al., [2009])
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co’maws Raindrop comes to equilibrium before impinging

o R 5 -r:“*"*- (Sugioka and Komori [2007]).
e =TS8 Komori et al. [2007] suggested that the effect of
B W rainfall on the net global CO, budget for 2001 is less
amae) - than 3%.  Also found that rainfall effects were
Komori et al., 2007 significant for the local air-sea CO, budget In

equatorial and mid-latitude regions compared to the



Biosphere 2 Ocean
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e 2,650 m? of saltwater Mean depth of 3.5 m
» Surface area of 711 m?

« Salinity of 35.5; Water maintained at 26.5 °C

« Vacuum wave generator

« Most of the ceiling above ocean > 13 m
Zappa, C. J., D. T. Ho, W. R. McGilllis, M. L. Banner, J. W. H. Dacey, L. F. Bliven, B. Ma, and J. Nystuen (2009),

Rain-induced turbulence and air-sea gas transfer, Journal Of Geophysical Research Oceans, 114(C07009),
doi:10.1029/2008JC005008.



Bio2 RainX |l

* Investigate the effect of freshwater rain on the gas transfer
velocity for a saltwater ocean

Significant dilution of the near-surface salinity in addition to
enhancement of turbulence and gas transfer velocity.

Relevant Measurements:
= Gas exchange determined by SF; evasion experiment.

= Rain rate and drop size distribution using NASA’s Rain Imaging
Sensor.

= Monitoring the high-resolution temperature and salinity gradients.
= Turbulence measurements usin pulse coherent sonar.
(180°m).

*RE1: along rain event
*RE2/3: a short rain events (30 min).

*RE4: a longer rain event (122 min), during which an SF,
evasion experiment was conducted.






Effect of Stratification on Near-Surface
Turbulence

* Turbulence decays with depth from
the air-water interface, trapped by
stratification

* Turbulence very near the surface is
key to transfer.

Stratification
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Effect of Stratification on Near-Surface

Turbulence

» Turbulence decays with depth from
the air-water interface,

 Less Stratified because of
background mixing

* Turbulence very near the surface is

key to transfer.
Turbulent Dissipation Rate
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Gas Transfer Scaling

A RainX Il ACFT
A RainX lll ACFT
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Gas transfer velocity from ACFT versus modeled k as determined from (1) for all rain rates during both RainX Il
(see Ho et al. [2004]) and RainX Il at Biosphere 2. The gas transfer measurement using the SF4 tracer release
during RainX Il is also shown for comparison.




Mean Turbulence Profile

* Turbulence decays with depth
from the air-water interface

« Compared to Craig-Banner model
with standard Mellor-Yamada
coefficients, the measured KEF
iInput, and variation in zo based on
previous field measurements.

* Note: turbulence very near the
surface is key to air-sea gas
transfer.

Dissipation Rates:

Breaking Waves:
10-°to 102 W kgt

Energetic Mixed Layers:
106to 10*W kg

Hudson River:
107 to 10°W kgt
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Sea Surface Chemical Dilution
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* Near-surface salinity, total alkalinity (TA), and dissolved inorganic carbon (DIC)
are diluted during rainfall in proportion to the excess of precipitation over
evaporation. This dilution also decreases p(CO,) in the surface boundary layer

[Dickson et al., 2007].

* Observational data from the model ocean studies [Zappa et al., 2009] showed the
rate of sea surface salinity (SSS) dilution is linearly dependent on the measured

rain rate.

« Effects of dilution of DIC and TA on p(CO,) are determined based on standard
carbon system models [Dickson et al., 2007].

* Due to the strong stratification, surface effect can be maintained for a significant
time.



Field Observations

« Seawater collected from Long Island Sound.
» Realistic chemicals mimicking the ocean surfag
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Takahashi ApCO, Database for 2000

Mean ApCO2 Year 2000
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The flux of gas is the product of the gas transfer velocity
and the concentration difference between atmosphere and

e = —— = — —
i

Takahashi et al.,
2009



Quantifying the Flux Components

L = = T = == " =

*Transfer velocity due to wind is determined from the quadratic relationship of
Wannhikhof (1992).

=== = == - -

*Transfer velocity for both wind and rain is determined from the sum of the
quadratic relationship of Wannhikhof (1992) and k,_,,. The transfer velocity due to
rain is determined from Ho et al. (1997) and the results are compared. Ho et al.
(2007) have suggested that the k,;,4 and k., are linearly additive.

* Diluted surface p(CO,) is ocean surface p(CO,) after chemical dilution and is

determined using a dilution model with measured salinity and rain rate. Strong
dllutlon Is typically missed by surface mixed layer and climate models, as well as

E AR




pCO, [patm]

pCO,,, — pCO,, [Hatm]
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Turk, D., C. J. Zappa, C. S. Meinen, J. R. Christian, D. T. Ho, A. G. Dickson, and W. R. McGillis
(2010), Rain impacts on CO, exchange in the western equatorial Pacific Ocean, Geophys. Res.

Lett.,doi:10.1029/24 2010GL045520.



Takahashi ApCO, Database for 2000

January ApCO2 Year 2000
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Global Precipitation Climatology Project

Mean January Rainfall Rate

Mean Annual Rainfall Rate
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« Combination of Special Sensor Microwave/lmager (SSM/I) data, infrared (IR) sensor estimates,
Atmospheric Infrared Sounder (AIRS data from the NASA Aqua) and Television Infrared Observation
Satellite Program (TIROS) Operational Vertical Sounder (TOVS) and Outgoing Longwave Radiation
Precipitation Index (OPI) data from the NOAA series satellites..



Global Seasonal Wind Speed

July Wind Speed Year 2000
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Global Uptake of CO, Due to Rain
Turbulence

Raindrops Raindrops

[10° gClyr] [10° gClyr]

Kioias from Harrison et al. [2012]

k(600), = k(600),, + (1 —e™*) k(600),  k(600), = 63.02(KEF,)***
KEF, = 0.0112R
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Global Uptake of CO, Due to Rain
Turbulence and Dilution

Kioral from Harrison et al. [2012]
Raindrops and Dilution
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Global Rain Deposition of CO,

Deposition
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The deposition flux of gas is the product of the
rain rate and the concentration of CO, in the
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Global Uptake of CO, Due to Rain

Kioia from Harrison et al. [2012]

Rain Only Uptake
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Global Uptake of CO, Due to Wind

Wind Only Uptake
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Ratio of Rain to Wind Effects on Global
Uptake of CO,

Rain:Wind Effects
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Latitude Variation in the Global Uptake of
CO, Due to Rain

Carbon Uptake Enhancement Due to Rain Effects
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These two rain processes increase the ocean sink of
atmospheric carbon dioxide by more than 0.2 Pg C/year.



Global CO, Budget Summary of Results

Pg C per Year Increase in CO, Uptake
Takahashi et al. [2009] -1.380

Deposition -1.443 +4.51%

Rain-enhanced K without dilution

Harrison et al. [2012] -1.379 -0.16 %
Ho et al. [1997] -1.404 1.61%
Komori et al. [2007] -1.385 0.21 %

Rain-enhanced K plus dilution

Harrison et al. [2012] -1.453 5.16 %
Ho et al. [1997] -1.482 7.25 %
Komori et al. [2007] -1.459 5.61 %

All Rain Effects
Harrison et al. [2012] -1.515 9.59 %

Ho et al. [1997] -1.544 11.69 %
Komori et al. [2007] -1.521 10.04 %



Rain Only Uptake Rain:Wina tEfttects

[10°gC/yr] Logs(|Rain:wind[)

Explored the effects of precipitation on the global flux of CO,, including enhanced
transfer velocity, chemical dilution of the near surface, and deposition.
— Built on the results of Komori et al. (2007) to include the effect of chemical dilution.

For the year 2000, results show that the effects of precipitation increase the net
global CO, flux by more than 10%.
Applied Harrison et al. [2012] gas transfer wind speed parameterization with enhanced rain effect
— Compared Ho et al., [1997] and Komori et al., [2007] gas transfer velocity parameterizations for
rain
— Compared assumption for linearly additive k for all wind speeds versus up to a cutoff of 5m s

Conservative estimate for the flux given the temporal resolution of the global
datasets and the nonlinear nature of the enhanced transfer velocity

— Furthermore, the significant observed stratification may increase the residence time of the surface
dilution before it is mixed.

As ocean uptake Is forecast to decrease in time, the contribution from rain may
Increase to 30% of the total atmosphere to ocean carbon dioxide flux by 2100






Transfer Velocity vs. Wind Speed

 The transfer velocity is
a function of the
diffusivity and the
turbulence at the
Interface, and is

parameterized by
KocSc™ f(U, /)

« Wind forcing plays a
central role In
generating near-
surface turbulence.

Relate known K for one gas to any other gas usi@ = K2

k(600) (cmh )
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80 —

—— Wanninkhof, 1992
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+ + ++ Waninkhof and McGillis, 1999
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Gas Transfer with KEF
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Gas transfer velocity versus kinetic energy flux, KEF. Freshwater data represent distinct raindrop sizes with
diameters of 2.3 mm, 2.8 mm, and 4.2 mm from experiments at the Wallops rain facility and are summarized in Ho
et al. [2000]. Saltwater data represent broad raindrop size distributions and are from RainX Il (see Ho et al.
[2004]) and this study of RainX Il at Biosphere2.



Future Directions

Mean ApCO2 Year 2000
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* Equatorial Pacific ApCO, database from 1990 to 2004 [Christian et al., 2008].
« Examine the decadal variability in the CO, uptake by the equatorial Pacific.
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Future Directions

Mean ApCO2 Year 2000

Examine the effects of increasing temporal
_ S resolution on globally integrated CO2
uptake

*Deposition expected to be unaffected as it
Is based on volume of rainfall

sInstantaneous gas transfer rates predicted
to be larger

» Daily: GPCP daily rainfall climatology, daily NCEP wind speed climatology
» Sub-daily: TRMM three-hourly rainfall data (x50 latitude), Merra re-analysis
hourly wind speeds

* Preliminary results from the daily climatologies suggest an additional 2.5%
Increase in the oceanic uptake of CO2



Future Directions

Kwajalein (Marshall Islands)
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* Measure the physical and chemical effects of rain in an open ocean
environment ocean.

* Improve our model for the chemical dilution due to rain and the impacts of
mixing (e.g., wind and waves).

* Investigate the effects of deposition on the chemistry of the near-surface
ocean including the raindrop chemistry.

Figure 32. Rainfall for Kwajalein Island, RMI [NCDC].
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Future Directions

NEXRAD Base Reflectivity

NEXRAD Level I, Base Reflectivity,in dBZ,H=500 m, KHGX,30-May-05, t=11:56
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Air-Sea Interaction Processes
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DopBeam Measurements
Profiles of veIOC|ty along the‘_beam




DopBeam Measurements

Profiles of velocity along the Frequency Spectrum of

beam (vertical)
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Infrared Imagery and CFT Measurements
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Controlled Flux Technigue
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Turbulent Dissipation Rate

Turbulence and Transfer Velocity

Transfer Rates from CFT
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Gas Transfer Scaling

A RainX Il ACFT
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Gas transfer velocity from ACFT versus modeled k as determined from (1) for all rain rates during both RainX Il
(see Ho et al. [2004]) and RainX Il at Biosphere 2. The gas transfer measurement using the SF4 tracer release
during RainX Il is also shown for comparison.




Mean Turbulence Profile

* Turbulence decays with depth
from the air-water interface

« Compared to Craig-Banner model
with standard Mellor-Yamada
coefficients, the measured KEF
iInput, and variation in zo based on
previous field measurements.

* Note: turbulence very near the
surface is key to air-sea gas
transfer.

Dissipation Rates:

Breaking Waves:
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