Progress on direct air/sea CO2 flux observations: results from DYNAMO2011 and TORERO2012

<u>Ludovic Bariteau</u>, Byron Blomquist, Chris Fairall, James B. Edson, Wade McGillis, Jeff Hare and Barry Huebert

IFREMER, Brest, France, 24-27 September 2013

Outline

- Overview of new analyzers
- Results from field deployments
- Discuss the most significant errors resulting from instrumental and meteorological causes to address them
- Recommendations

Overview of Instrumental Methods

<u>Cavity Ring-Down Spectrometers /</u> Picarro

- reduction in decay time when absorbing molecules are introduced is proportional to absorbance.
- absorption peak \rightarrow peak height \rightarrow gas concentration
- cavity temperature and pressure carefully controlled
- correction for line broadening is also necessary

- broadband light + chopper wheel to sequentially measure infrared absorption at narrow bands corresponding to CO2, H2O
 Compensation for zero-drift and crosssensitivity + Band-broadening correction
 measure optical cell temperature and pressure
- motion related interference
 water vapor interference on CO2 measurements

Overview of Field deployments

DYNAMO 2011 (R/V Revelle)

- August 2011 to February 2012
- Dynamics of the Madden-Julian Oscillation
- Three LI7500 , two LI7200 and pCO2
- 200-tube Nafion air dryer with sample air dew point to <−15 °C
- 30m, 40 Lmin⁻¹, 4Lmin⁻¹

TORERO 2012 (R/V Ka'imimoana)

- 25-Jan-2012 to 27-Feb-2012
- distribution, reactivity and abundance of oxygenated organics and halogen radicals over the Eastern Pacific
- one CRDS fast CO2 analyser
 (Picarro model G1301-f) with Nafion dryer
- 50m, 80 Lmin⁻¹, 5Lmin⁻¹

 Δ pCO2 computed from the CRDS flux data compares favourably with January-February mean Δ pCO2 from equatorial cruise data in the region

Results: Flux Observations -TORERO 2012

Noise Characteristics

Water Vapour Cross-Sensitivity

Water Vapour Cross-Sensitivity

 $c = c_m - \mu_0 q$

 $\overline{w'c'} = \overline{w'c'_m} - \mu_0 \, \overline{w'q'}$

- •The PKT method (Prytherch et al., 2010a)
- cross-correlation method (Edson et al., 2011)

		Median $F_{co_2}\pm 1\sigma$	(ppm m s^{-1})
	Base Case	PKT^{a}	$\operatorname{Cross-correlation}^{b}$
$LI7200 \ lab^c$	0.00047 ± 0.00049	_	-
$LI7200 \text{ mast}^{d}$	$0.00663 {\pm} 0.00396$	$0.00061 {\pm} 0.01423$	0.00122 ± 0.00155
LI7500 mast ^e	-0.00678 ± 0.00314	-0.00254 ± 0.00467	-0.00081 ± 0.00222
 ^a Prytherch et al. (2010a) ^b Edson et al. (2011) 			

⁵ dry-air data, WPL and dilution corrections not required

^d computed from "dry" mole fraction output. No WPL/dilution correction

^e WPL and dilution corrected

Motion Related Effects for CO2 Analysers

Spectral attenutation

- additional low-pass filtering effects from tubing in closed-path systems
- 2 approaches:
 - \rightarrow transfer functions (empirical or puff)
 - \rightarrow spectral similarity methods with w'T' or w'q' for instance.

- DYNAMO and TORERO puff more liable measure of the attenuation correction.
- 6-7% correction for TORERO and DYNAMO

Stationarity, Homogeneity and Entrainment

 $\partial CO2/\partial t < 0.5 \text{ ppm hr} - 1 \rightarrow \sim .25\% \text{ of } CO2 \text{ background concentration per } 60\text{km at } 8 \text{ m/s}!$

Summary and Recommendations

1. water vapour interference is the most significant factor limiting precision and accuracy for shipbased CO2 flux studies

 \rightarrow DRY! (computed corrections in the LI-COR algorithm appear to be insufficiently precise for measurements of airsea gas transfer). Eliminates crosstalk and WPL correction uses altogether and a lot of uncertainty

2. At high flow rates, long sample lines do not significantly degrade flux measurements with closed-path analysers.

 \rightarrow A variety of useful methods exist to determine frequency attenuation and lag time

 $\rightarrow\,$ In our case, hourly gas pulses at the sample inlet have proven most useful in our work

- 3. motion interference need to be carefully evalueted and corrected as possible
- 4. scalar stationarity for flux measurements of CO2 and other trace gases is necessary.

 \rightarrow Traditional stationarity tests are not always effective near the flux detection limit.

 \rightarrow An examination of horizontal turbulent fluxes can help improve selectivity of the stationarity test.