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Motivation

* Hypotheses « Conclusion
Air-sea exchange in strong The topic Is:
winds:

— Is NOT a simple extrapolation of
more moderate conditions, but is
genuinely extraordinary

— Represents a large fraction of — Important
exchange averaged seasonally,
regionally and globally

— Can be realistically studied by a — Tractable
range of in situ, remote sensing and
(laboratory and numerical)
modelling methods

— Distinct
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When winds are strong
(12 — 25 m/s)



Model Relationships of Whitecapping to Wind Speed
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Air-sea gas exchange in a
bubbly ocean

Net Flux =K (aC, -C,)

1) Flux IS NOT proportional to air-water
concentration difference!

K=a Uy, Sct?

2) Transfer velocity doesn’t depend simply
on wind speed

3) The dependence on molecular properties
Involves more than Schmidt Number



Modification of gas transfer velocities due to

collective effects

Simple model is modified to include finite plume size. Here void

fraction is assumed to be 25%
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Belcher et al., 2012; deepening of OSBL
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Belcher et al., 2012: dee

Regime diagram
for relative
contribution of
directly wind-
forced, wave-
forced and
convective forcing
to turbulent
dissipation.

White contours are
the joint pdf for
Southern Ocean
winter (JJA)

pening of OSBL
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When winds are too
strong (> 25 m/s)



Regime change at high mixing?

<— Regqular

Distribution of bubbles results
from a “gravitational sieve”.
Partial dissolution is typical

Critical point
Most of volume flux is in large

bubbles, all with similar
terminal rise velocity ~0.25m/s

Injection —

If critical point is exceeded even
large bubbles may be
submerged to large depths
and total solution is typical




Effect of heavy particles
on turbulence?
Kudryatsev, 2006

N.B. Spume drops not
bubble droplets
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Aerodynamically Smooth?
Holthuijsen, Powell and Pietrzak, 2012

47.4 m/s

{ ll = Clear surface |
.| =White cap
Il = Streak




Drag coefficient Cg, (x103) | 2

Aerodynamically Smooth?
Holthuijsen, Powell and Pietrzak, 2012
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o

Drag coefficient C, (x10°?)
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Aerodynamically Smooth?
Holthuiisen, Powell and Pietrzak, 2012

Azimuthal hurricane sectors

\'  right-front
\ (following swell)

/ rear
+  (opposing swell)

o, <30°

this study
Cy

90%

confidence

—@— left-front

—@— rear

—@—i right-front

o, <45°

o255

44 23
56 23 23

I

40 50

Wind speed U, (m/s)




Aerodynamically Smooth?
Holthuijsen, Powell and Pietrzak, 2012
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