

Air-Sea Exchange in Strong Winds

David Woolf d.k.woolf@hw.ac.uk

International Centre for Island Technology Heriot-Watt University

Slippery when windy?

NOAA Peter Black

Motivation

- Hypotheses
- Air-sea exchange in strong winds:
 - Is NOT a simple extrapolation of more moderate conditions, but is genuinely extraordinary
 - Represents a large fraction of exchange averaged seasonally, regionally and globally
 - Can be realistically studied by a range of in situ, remote sensing and (laboratory and numerical) modelling methods

- Conclusion
 The topic is:
 - Distinct
 - Important
 - Tractable

When winds are strong (12 – 25 m/s)

Air-sea gas exchange in a bubbly ocean Net Flux = K ($\alpha C_a - C_w$)

1) Flux IS NOT proportional to air-water concentration difference!

$$K = a U_{10N}^{b} Sc^{-1/2}$$

- 2) Transfer velocity doesn't depend simply on wind speed
- 3) The dependence on molecular properties involves more than Schmidt Number

Modification of gas transfer velocities due to collective effects

Simple model is modified to include finite plume size. Here void fraction is assumed to be 25%

Belcher et al., 2012; deepening of OSBL

Belcher et al., 2012; deepening of OSBL

Regime diagram for relative contribution of directly windforced, waveforced and convective forcing to turbulent dissipation.

White contours are the joint pdf for Southern Ocean winter (JJA)

When winds are too strong (> 25 m/s)

Regime change at high mixing?

 ← Regular
 Distribution of bubbles results from a "gravitational sieve".
 Partial dissolution is typical

Critical point Most of volume flux is in large bubbles, all with similar terminal rise velocity ~0.25m/s

Injection → If critical point is exceeded even large bubbles may be submerged to large depths and total solution is typical

Effect of heavy particles on turbulence? Kudryatsev, 2006

N.B. Spume drops <u>not</u> bubble droplets

 h_S

k

Let us talk